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Abstract
Due to the critical role causality plays in decision-making, the state-
of-the-art inmachine learning for causality is rapidly evolving.With
rapid development and deployment of new models, datasets, and
metrics, it is increasingly difficult for researchers and practitioners
to identify the most suitable approach for their problem. Models
exhibit different performance when they train on different data, and
even different hardware/software platforms, making it challenging
for users to select the appropriate setup pertinent to their problem.
It is therefore increasingly critical to fairly benchmark algorithms
through a unified platform across different metrics, software, and
hardware. To address these shortcomings, we present CausalBench-
a comprehensive benchmarking tool for causal machine learning
that facilitates accurate and reproducible benchmarking of causal
models across metrics and deployment contexts as per the user’s
needs. CausalBench provides a platform for researchers to utilize
its collaborative nature to create benchmarks that are transparent,
flexible, and reproducible. It serves, not only as a benchmarking
platform for causal machine learning models, but also as a resource
that can explain benchmarking results across different metrics,
software, and hardware setups. In this paper, we introduce the
various key features of CausalBench, within the context of real-
world use cases on static and temporal causal discovery tasks.

Keywords
Causal machine learning, causal discovery, benchmarking

1 Introduction
Machine learning models focus on maximizing association between
features and outcomes [38]. Recent research has emphasized learn-
ing causal relationships to aid in establishing a direct and consistent
link between features and outcomes, and are directly reflective of
the problem being modeled [37, 85, 86].

In critical areas like public health, grasping these causal connec-
tions is vital. For instance, while modeling epidemics, it is essential
to capture causally complex interplay of entities in a multi-layer
network, including (a) individuals and their social interactions, (b)
physical short-range and long-range networks of mobility, (c) pa-
rameters of disease models (such as infection rate, average length
of recovery, and impact of treatment), and (d) intervention deci-
sions (such as school closures or restrictions on mobility) [96, 102].
Unfortunately, traditional methods like randomized controlled tri-
als (RCTs [93]) are often impractical or unethical in such contexts.
Fortunately, the availability of extensive observational data enables
∗The first two authors have equal contributions. This research is funded by NSF Grant
2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for
Efficacy, Reproducibility, and Scientific Collaboration".
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Figure 1: Overview of CausalBench (causalbench.org)

the approximation of causal relationships through data analytics,
facilitating the discovery of meaningful patterns and informing
effective decision-making. Causal learning from observational data
offers a promising alternative to correlation-based learning [12].

1.1 Difficulties Facing the Research Community
Inferring causal relationships from data refers to the task of
causal discovery [92]. Given the complexity of real-world prob-
lems, accurately identifying causal relationships is challenging. Re-
searchers across different disciplines have made significant efforts
to develop algorithms that allow for discovering causal relation-
ships across different contexts (e.g. static, temporal, and spatio-
temporal) [6, 13, 25, 81, 87, 91]. However, due to the volume of
methods, datasets and metrics there is a lack of a unified platform
that allows users to benchmark different algorithms to identify
the most suitable ones for their use case. Moreover, existing tools
exhibit different performance when they train different types of
causal models on different hardware platforms, making it more
challenging for users to select the appropriate setup pertinent to
their problem.

Standardized evaluation played a major role in ML development
and contributed to the impressive impact of ML in scientific inno-
vation. Successful early benchmarking efforts, such as UCI ML and
UCI KDD repositories [8], not only helped guide the development
of efficient and effective ML algorithms, but also encouraged collab-
orative research and paved the way for the recent breakthroughs
in deep learning. For example, to evaluate an image classifier, we
have a widely used set of metrics (e.g., accuracy, F1 score and ROC-
AUC), procedures (e.g., cross validation [94]) and datasets (e.g.,
MNIST [23], CIFAR10 [49] and ImageNet [22]). By developing a
unified platform facilitating researchers to benchmark different
causal discovery techniques across different levels (e.g. metrics,

1

https://causalbench.org


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Kapkiç et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

datasets, hardware) can aid the causal learning community to dis-
cover areas where further efforts are needed, and aid in identifying
the most suitable causal discovery setup for evaluating against their
problems, and provide a better causally driven understanding of
different problems under different contexts.

1.2 CausalBench
Arguing that this goal can only be achieved through systematic,
objective, and transparent evaluation of causal learning models and
algorithms, we present CausalBench [1, 47], a platform of publicly
available benchmarks and consensus-building standards for the
evaluation of causal learning models and algorithms from observa-
tional data1. Therefore, CausalBench aims to serve as a transparent,
fair, and easy-to-use evaluation platform, with benchmark data,
metrics, and procedures, as well as state-of-the-art baselines, in
order to help establish trust in causal learning’s innovation, collab-
oration, and applications (Figure 1):
• Objective 1: Universally adopted metrics, procedures and

datasets. This involves conducting an extensive identification
of existing datasets, performance metrics, and procedures used
in the evaluation of state-of-the-art causal learning algorithms,
and developing an “ontology” for benchmarking to standardize
the evaluation methodology, improve transparency, and promote
collaboration to efficiently advance causal learning.

• Objective 2: A standard and convenient way for the community
to contribute data and models. Different from datasets for con-
ventional machine learning, it is often difficult to obtain ground
truth of the causal relations among observed variables, not to
mention the potential existence of unobserved variables, as in
many cases we have to work with datasets with incomplete
causal knowledge. How to ascertain that disparate datasets can
be integrated in a standard way is an open challenge.

• Objective 3: Evaluation of algorithms for novel problems. Novel
problems of causal learning are emerging as the topic of causal
learning attracts increasing attention. Researchers identify and
formulate novel problems that are relevant in data intensive
applications. To quantify the progress in the active research area
of causal learning in a scientific way, it will be necessary to define
evaluation standards.

In brief, CausalBench, publicly available both as a website and a
python package aims to assist researchers and developers in easily
applying and effectively evaluating (a) causal inference, (b) causal
discovery, and (c) causal interpretability algorithms with a variety
of standard metrics, procedures, and large-scale datasets.

2 Related Work
2.1 Causality
The study of causality has a long-standing history, yet defin-
ing causal relationships—and more so, uncovering them from
data—remains an unresolved challenge [37]. Early approaches pre-
dominantly relied on statistical methodologies. For instance, the
widely used Granger causality [7, 36, 53] is inherently statistical.
Fisher [9, 28] and followers advocated a statistical perspective on

1Documentation and a video explaining how to use CausalBench are available at
https://docs.causalbench.org.

causality, emphasizing randomized controlled trials (or, at mini-
mum, quasi-randomized experiments [48, 75]) as a means to miti-
gate confounding effects. Rubin [78] advanced the "potential out-
comes" framework and the counterfactual approach to defining
causality [77, 79], interpreting causal inference as a missing-data
problem where imputation offers a feasible solution. This school
of thoughts accelerated significant advancements in data-driven
causal inference, such as structural equation models [40, 71]. How-
ever, its applicability hinges on the validity of the "ignorability"
assumption, which asserts that no unobserved confounders influ-
ence the causal mechanism [67, 72, 73, 76].

In contrast to these statistical approaches, Wright [104] argue-
dat causal conclusions cannot be inferred solely frofrom thee data
without incorporating causal hypotheses. This point of view led
to the development of highly effective practical methodologies, in-
cluding path analysis [24, 30, 104], structural equation modeling
(SEM [40, 71]), and Bayesian Networks [69], all of which lever-
age directed graphs to represent contextual knowledge, although
not necessarily causally. Pearl introduced structural causal models
(SCMs [70, 74]), which employ directed graphs to explicitly encode
causal assumptions, enabling hypothesis testing and validation.
Pearl and colleagues demonstrated that simple causal graphs can
mitigate many common errors encountered in statistical causal
analysis, offering a principled approach to handling colliders, con-
founders, and other sources of flawed causal reasoning [67, 71]. In
this framework, learning causality requires rigorous methods that
simultaneously infer structural causal hypotheses, represented as
latent causal graphs, and estimate causal effects [52, 101].

2.2 ML Benchmarks – A Success Story
Conventional machine learning had maverick beginnings and its
success is largely due to grassroots efforts to enable performance
evaluation [29]. ML algorithms seek to build a mathematical model
based on sample data, known as “training data”, in order to make
predictions or decisions without being explicitly programmed to
perform the task [61]. When an ML algorithm discovers some pat-
terns (a.k.a. a model), it is not guaranteed that the model actually
works as designed. Thus, objective and fair performance evalu-
ation is necessary to enable (a) if a new algorithm works better
than an old one, (b) identify strengths and weaknesses of differ-
ent algorithms, and (c) to enable reproducibility. The UC Irvine
(UCI) machine learning repository [8] is one of the largest and
earliest benchmarking efforts for ML research and is a collection of
databases, domain theories, and data generators that the ML com-
munity uses for the empirical analysis of ML algorithms. ImageNet
is another recent successful example of benchmark data [22], con-
taining more than 14 million hand-annotated images and providing
a standard by which the accuracy of image recognition software
can be measured. ML research has advanced through efforts to stan-
dardize transparent evaluation. Scientific challenges like TREC [98]
and CLEF [19], industrial crowdsourcing such as the Netflix chal-
lenge [27], ML-centric platforms like Kaggle [43], CodaLab [68], and
TopCoder [50], along with evaluation-as-a-service platforms [39],
have contributed significantly. Several specialized benchmarking
tools have emerged to enhance machine learning model evalua-
tion. The Ludwig Benchmarking Toolkit [64] offers a lightweight,
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customizable framework for deep learning assessment. MLMod-
elScope [20] unifies benchmarking across hardware platforms, fo-
cusing on latency and throughput. OpenML [97] facilitates dataset
and model sharing for collaboration and reproducibility. AMLB [32]
evaluates AutoML systems across tasks and frameworks. Weights
and Biases (𝑊&𝐵) [10] integrates experiment tracking, real-time
visualization, and hyperparameter optimization.

2.3 Causal Benchmarks
One of the earliest attempts to standardize causal discovery bench-
marking was the Tübingen Cause-Effect Pairs dataset [62]. This
dataset contains 100 real-world cause-effect variable pairs spanning
domains such as biology, economics, and physics. CauseMe [63] is
an online system for benchmarking causal discovery methods. It
offers both synthetic and real-world datasets with known causal
structures, allowing researchers to evaluate causal discovery algo-
rithms in controlled and real-world scenarios. More recently, OCDB
(Open Causal Discovery Benchmark) [106] was proposed as a more
structured benchmarking framework. However, it remains limited
to static causal discovery and does not extend to effect estimation
or temporal inference. Addressing the need for temporal causal
benchmarking, CausalTime [14] introduced a dataset generation
pipeline that creates realistic time-series data with ground-truth
causal graphs. CausalRivers [31] represents an effort to scale causal
discovery benchmarking to real-world time-series data. It consists
of a large dataset of river discharge measurements spanning multi-
ple years with fine-grained temporal resolution.

3 CausalBench Framework
Despite the efforts outlined in the previous section, the field still
lacks a unified, publicly available, and configurable platform that
supports all major causal inference tasks, including causal discovery,
causal effect estimation, and causal inference.

3.1 CausalBench Desiderata
We first introduce the desiderata driving the design of CausalBench:
• Reproducibility - As outlined in the introduction, one of the

critical challenges faced in the research community is repro-
ducibility of experiments. Even with the current best efforts to
provide detailed experiment setups, a change in a single driver or
library can cause significant differences in the results. An ideal
benchmarking platform would document every aspect of an ex-
periment, from the data to the hardware/software configuration
of the system used for running the experiments.

• Ease of use - Providing and matching every aspect of an experi-
mental setup is costly. Therefore, while thoroughly documenting
the setup and results, specifying and benchmarking contexts
should be straightforward and seamlessly integrated into regular
experimental workflows without adding significant overhead.

• Transparency - For the community to trust the results included
in the benchmark, the platform should provide a transparent
mechanism to track and log an experiment, whether on the data,
the model, or the experiment context itself.

• Fairness and Explainability - Perfect replication of an exper-
iment is an unattainable ideal. No matter how meticulous two
research teams are, they cannot perfectly replicate hardware,

software, and hyperparameter configurations. Therefore, when
comparing experimental results, it is crucial to identify and ex-
plain any differences in experimental setups that can explain
differences in the outcomes.

3.2 CausalBench – Formal Underpinnings
CausalBench includes several core components. These include
datasets, D, which are data files and configuration files that de-
scribe the properties of the data in the data files;models,M, which
are algorithms written in Python that take in a dataset and execute
a particular model, producing outputs based on the tasks and mod-
els; andmetrics A, which are Python implementation of metric
calculations that take in the outputs provided by the model and
output a numerical value, based on its configuration. CausalBench
follows a flexible approach, where datasets, models, and metrics
can be re-used for different causal machine learning tasks. The set
of all causal machine learning tasks available at CausalBench is
denoted as T . Given the above, a benchmark context, C, includes
a subset (denoted by the subscript 𝑃 ) of datasets D, models M
and accuracy metrics A, along with the appropriate parameter and
hyperparameter settings:

C = {(D𝑃 ,M𝑃 ,A𝑃 ,H𝑃 ),D𝑃 ⊆ D, M𝑃 ⊆ M, A𝑃 ⊆ A}.

Above,H𝑃 denotes the set of parameter and hyperparameter
settings applicable to the execution or training of the models.

Note that the benchmark context can equivalently be seen as a
set of benchmark scenarios:

C = {(𝑑,𝑚,A𝑃 , ℎ) | 𝑑 ∈ D𝑃 , 𝑚 ∈ M𝑃 , ℎ ∈ H𝑃 }.

An instrumented context, I, is a coupling of these benchmark
scenarios with a particular user hardware/software system, 𝑠:

I(C, 𝑠) = {(𝑑,𝑚,A𝑃 , ℎ, 𝑠) | 𝑑 ∈ D𝑃 , 𝑚 ∈ M𝑃 , ;ℎ ∈ H𝑃 }.

A benchmark run, R(I(C, 𝑠)), then, is the recording of the out-
puts of the execution of the benchmark scenarios in an instru-
mented context, I:

{(𝐴,𝑇 , 𝑆 ;𝑑,𝑚,ℎ, 𝑠) | (𝑑,𝑚,A𝑃 , ℎ, 𝑠) ∈ I(C, 𝑠)},

where 𝐴 is a set of key-value pairs recording the value for each
accuracy metric 𝑎 ∈ A𝑃 . 𝑇 is a set of key-value pairs recording the
timing values for each timing metrics, such as CPU-time, GPU-time;
and 𝑆 is a set of key-value pairs recording the system usage values
for each resource metrics, such as CPU-memory, GPU-memory. Not-
ing that the timing metrics 𝑇 and resource metrics 𝑆 are measured
for each benchmark scenario.

3.3 CausalBench System Modules
CausalBench stores datasets, models, and metrics along with au-
thenticated benchmark runs of its users in public or private reposi-
tories (Figure 1):
• A web-based dataset, model, and metric registration module

provides a guided interface through which a provider registers
a dataset, a model, or a metric with CausalBench. Registration
involves the systematic acquisition of metadata needed for the
discovery, access, and use of data and models.

3
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Figure 2: CausalBench runs page

• A data, model, and metric repository manages metadata asso-
ciated with all registered datasets, models, and metrics and en-
sures that these persist and are accessible. The repository further
stores (a) benchmark contexts and experiment setups consisting
of data, model, and metric components and (b) authenticated per-
formance results of benchmark runs and the associated metadata
(e.g., hyperparameters, hardware/software setups).

• A benchmark runs page2 (Figure 2) where performance results of
runs, including results, system information, and a DOI attached
to each benchmark run, is displayed. Experiment results are in a
tabular format that can be sorted and filtered.

• A CausalBench console-based Python package supports the ex-
ecution of causal machine learning experiments. The package
enables quantitative evaluation of the models (for accuracy and
efficiency) based on datasets in the repository using local CPU
and GPU resources.

• A web interface supports browsing through repositories of
datasets, models, metrics and benchmark contexts, exploring
(slice-and-dice) experiments across the runs executed through
CausalBench. In addition to providing data download links and
data descriptions, the platform also offers accessible APIs of
evaluation metrics and service interfaces.
In order to enable reproducible research on causal machine learn-

ing, once a dataset, model, or a metric is declared as public and is
included in at least one public run, it becomes permanent in the
system and cannot be removed. Benchmark runs that are made
public are registered with an open-access repository, Zenodo [26],
and are associated with a unique document object identifier (DOI).

3.4 CausalBench User Experience
CausalBench features two major components, a CausalBench li-
brary written in Python that handles execution and submission of
benchmarks, and a repository that has a web front-end that provides
users the existing datasets, models, metrics, benchmark contexts
and the results of benchmark runs. Thanks to these two compo-
nents, the user has several options available on launch: download-
ing/uploading a component, declaring and executing a benchmark
run, and exploring existing benchmarks.

3.4.1 Uploading Data, Models, and Metrics. CausalBench repos-
itory3 allows users to share their datasets. While these can be
2Screenshots of CausalBench Runs Page and others can be found in the Appendix.
3https://causalbench.org/

Data #Rows #Att

𝑑 ℎ

Param. # Iter. Learn Rate

Meta-Data HyperParam.

𝑚

𝐴 𝑇𝑆

Model
Size

𝑠

Hardware Software

Figure 3: Outline of the causal graph enabling the causally-
informed exploration and analysis of a benchmark

uploaded in the form of a manually packaged file, the CausalBench
Python library, written on Python 3.10 and hosted on PyPI under
the package name causalbench-asu4, provides features which allow
the users to tie-in the tasks of dataset publishing to their existing
workflow; instead of manually bundling the dataset and uploading
it as a file on the CausalBench repository, the package makes it
easier for the user to upload datasets to CausalBench immediately
after they have processed and cleaned their data.

3.4.2 Exploring Data, Model, and Metric Repositories. Users can
browse the CausalBench repository for available datasets, models,
and metrics. Each component is visualized as a card, providing an
overview of the relevant statistics of the components. Clicking on a
card provides details and allows downloading the component. The
cards corresponding to the versions of the same component are
clustered and stacked.

3.4.3 Execution and Registration of Benchmark Runs. A benchmark
run is essentially a benchmark scenario (a combination of datasets,
models, and metrics) instrumented and executed on the user’s lo-
cal resources. The UI helps the user in the process of creating
benchmark scenarios by filtering out incompatible components and
highlighting suitable ones as the user starts declaring aspects of
the benchmark scenario. This suggestion feature works based on
the inputs and the outputs of each component and their task type.

CausalBench Python library, referred to earlier, enables the users
to interact with the CausalBench ecosystem by executing bench-
marks and submitting its results. Executing a benchmark run in-
cludes creating an instance of the benchmark scenario with current
system and environment configurations on the local machine, run-
ning configurations for each combination of the core components,
and uploading the execution results, including the correspond-
ing resource usage, back to CausalBench. Once declared public,
these results are registered as permanent and associated with DOIs.
The Context module along with the permanancy inherent in each
benchmark run generated on the CausalBench platform enables
reproducibility of research findings5.

3.4.4 Exploration of Benchmark Runs. A user can visualize and
explore a benchmark run, consisting of multiple benchmark sce-
narios, instrumented and executed on the same hardware by the
same user. The user can also visualize and explore benchmark runs
4https://pypi.org/project/causalbench-asu/
5Results published in CausalBench can be verified in as few as four lines of Python
code.
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generated from the context executed on different hardware. This
involves slicing and dicing a benchmark run based on the datasets
and models and comparing the different metric results and resource
consumption. The entire benchmark run or its various subsets can
be downloaded by the user for external analysis and visualization.
In addition, the user can create virtual benchmark runs by declaring
a new benchmark context and collecting all compatible benchmark
scenarios that have been instrumented, executed, and recorded
in CausalBench at different times, potentially by different users.
This enables the user to explore the performance of the models on
different hardware/software settings.

3.4.5 Causally-Informed Explanation and Recommendation of
Benchmark Runs (CausalBench-ER). Since accuracy, timing, and
resource usage of the models may be impacted by the properties
of the data, underlying parameter/hyper-parameter settings, as
well as hardware/software configurations, CausalBench provides
causally-informed services to (a) disaggregate, de-bias, and explain
the various factors impacting accuracy, time, and/or resource perfor-
mance of the benchmark runs, as well as (b) propose new scenarios
to execute to obtain a more robust understanding of the model per-
formance. The causally-informed exploration and analysis services
provided by CausalBench includes the following:

• Causal explanations (impact and sensitivity analysis): The bench-
mark data are analyzed through a causal effect discovery algo-
rithm [84] to quantify the impacts of various factors on the target
accuracy, time, or resource usage in a given context.

• Causal recommendations: CausalBench aggregates the above im-
pact analysis, ranking, and prediction services into a causally-
informed recommendation service, which recommends addi-
tional benchmark configurations to execute.

Services that are not currently public, but will be included in future
versions of CausalBench includes,

• Causal ranking and exploration: Given a set of potentially con-
flicting decision parameters, the causal graph can be used to
identify a non-dominating (pareto-optimal) subset of the runs
that best highlight/explain the underlying trade-offs.

• Causal prediction (with knowledge transfer): Given a causal model
and a benchmark of runs, CausalBench can provide causally-
informed performance predictions under new settings [15, 103].
CausalBench will tackle data sparsity through causally-informed
knowledge transfer across simulation contexts, by disaggregating
shareable and non-shareable information relying on the under-
lying causal structure.

Figure 3 provides the outline of the causal graph that forms the
basis of these causally-informed explanation and recommendation
services. As outlined earlier, CausalBench collects detailed profiling
information during the benchmark execution step to provide trans-
parency and enhance reproducibility across experiments. These
include both easily quantifiable data, such as available memory, but
also less quantifiable information, such as CPU or GPU models or
package versions. Whenever possible, CausalBench-ER relies on
established hardware benchmarks, such as Geekbench and Pass-
mark [2, 3], to map these latter category of context information
onto numerical performance scores for causal impact analysis.

Table 1: Summary of selected datasets for the static causal
discovery case study

Dataset Instances (Rows) Features (Columns) Origin

sim15-7 200 6 Simulated
sim4-47 200 51 Simulated
sim9-49 5000 6 Simulated

Abalone 4000 10 Real Life
Sachs 7000 12 Real Life

Estimating causal effects, which involves quantifying the influ-
ence of a treatment variable on an outcome, is a central challenge
in causal learning. Treatments may be binary, categorical, or con-
tinuous. In this work, we focus on continuous treatments, as they
are commonly encountered in benchmarking scenarios — for in-
stance, when treatments represent hardware resource allocations
or hyperparameter values. To estimate the average treatment ef-
fect (ATE), CausalBench-ER adopts linear regression with backdoor
adjustment, under the assumption that a valid adjustment set is
available. Figure 3 provides the outline of the causal graph that
forms the basis of these causally-informed exploration and analy-
sis services. More specifically, CausalBench-ER leverages a priori
causal knowledge, described in the form of a causal graph, to boost
the representational ability and achieve better explanations and
recommendations. Given a causal graph (Figure 3), enriched by
data-driven causal impact analysis describing the underlying causal
relationships among the various factors impacting performance,
CausalBench-ER provides explanations that are causally-robust.

To help obtain further insights, CausalBench-ER also provides
causally-informed recommendations to its users: These recom-
mendations can include suggestions of new experiments/scenarios
to be considered (a) to strengthen the statistical strength of the
current analyses or (b) to validate or refute specific hypotheses.
CausalBench-ER can also (c) recommend an execution context
(such as hyper-parameter settings) given a dataset, instrumenta-
tion context, and target metrics. A specific mechanism by which
CausalBench-ER recommendations can improve experimentations
and benchmarking relies on causal effect strengths obtained by the
causal analysis process against a selected performance metric. In
this case, given a dataset and a target metric, along with a target
number of new benchmark runs to be executed, CausalBench-ER
identifies the most causally impactful scenario settings (hyperpa-
rameters, instrumentation context parameters, etc.) and proposes a
grid-search strategy that is informed by the strengths of the causal
effects: scenario settings that have larger causal impacts on the
target metric are more finely experimented, while avoiding new
experiments that are close to existing benchmark runs. Other poten-
tial strategies include causally-informed factorization machine [51]
style recommendations for new execution contexts, given a target
metric to minimize or maximize.

3.5 Case Study #1 – Static Causal Discovery
In this section, we demonstrate the use of CausalBench on static
causal discovery tasks.

3.5.1 Datasets. CausalBench currently boasts 1400 static datasets
from different sources, including real and simulated datasets. To
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showcase benchmarking of static causal discovery, in this case
study, we experiment with three different data contexts across five
datasets; two real world datasets, Abalone and Sachs, and three
simulations from the NetSim dataset to compare the performance
across real world and synthetic datasets:
• Abalone [65] is a real life dataset that includes measurements

about a group of abalones, including their length, diameter, age,
and more. The ground truth is provided at [16].

• Sachs [83] is a dataset derived from multiparameter single-cell
data. The underlying causal relationships are provided at [16].

• NetSim [89] provides 1440 datasets from 28 simulations of FMRI
data. The underlying ground truth information is provided as
adjacency matrices between nodes for each dataset. For this
case study, we specifically chose sim15-7, sim4-47, and sim9-
49 simulations from the NetSim dataset, as they provide the
largest variance between selected datasets in terms of feature
and instance sizes.

Table 1 provides a summary of selected datasets in terms of in-
stances, features and data origin.

3.5.2 Models. We apply two causal discovery models ailable avin
CausalBench on the selected datasets.
• PC [90] (Peter-Clark) algorithm is a widely known constraint-

oriented causal discoverymethod. PC algorithmworks by finding
(undirected) causal relationships between variables, then directs
the edges and provides a PDAG (partially directed acyclic graph)
or a DAG (directed acyclic graph). PC assumes Causal Markov
condition, faithfulness - no conditional independence without
Markov condition is met -, no hidden confounders and cycles in
the causal graph. CausalBench’s PC algorithm implementation
supports several conditional independence tests and original,
stable, and parallel variants of the algorithm as hyperparameters.

• GES [60] (Greedy Equivalence Search), is a score based causal
discovery algorithms that works with a forward and a backward
phase where new edges are added and removed to maximize a
scoring function, and returns a DAG. CausalBench’s GES imple-
mentation includes BIC and BDeu scores as hyperparameters.

Both PC and GES algorithms on CausalBench are based on [105].

3.5.3 Metrics. In this case study, we employ four accuracy metrics
from CausalBench to evaluate the model outputs. Specifically, we
formulate causal graph evaluation as a classification task, where the
presence or absence of an edge is treated as a binary classification
problem. The four metrics used—accuracy, precision, recall, and F1
score—are adapted from traditional classification tasks to assess the
correctness of predicted causal edges [11]. While we do not consider
in this case study, CausalBench also provides other accuracymetrics,
such as the structural hamming distance (SHD) [21].

3.5.4 Sample Results. In this section, we provide a sample subset
of results from the static causal discovery benchmark with regards
to metrics listed above. To replicate the results included here, the
reader is advised to install the latest CausalBench repository and
call the context with module_id = 5, version = 1:

from causalbench.modules import Context, Run
context_static: Context = Context(module_id=5, version=1)
run: Run = context_static.execute()
print(run)

Table 2: CausalBench results for static causal discovery
(CBench Run ID: 34, results are recorded at [45])

Dataset Model CBench CBench
Accuracy Res.ID F1-Score Res.ID

abalone GES 0.6049 505 0.2727 506
PC 0.6543 509 0.2222 510

NetSim-sim15-7 GES 0.68 521 0.4285 522
PC 0.76 525 0.5714 526

NetSim-sim4-47 GES 0.9636 529 0.4678 530
PC 0.9712 533 0.4929 534

NetSim-sim9-49 GES 0.68 537 0.5 538
PC 0.76 541 0.5 542

sachs GES 0.6611 513 0.3050 514
PC 0.7768 517 0.4255 518

Table 3: Sample CausalBench results for different hyperpa-
rameters (PC model, Abalone dataset) – static causal discov-
ery (CBench Run ID: 62, results are recorded at [54])

Hyperparameters CBench CBench

alpha variant Accuracy Res.ID F1-score Res.ID

0.0010 original 0.6914 3103 0.2424 3104
0.0010 stable 0.7037 3107 0.2500 3108
0.0531 original 0.6543 3183 0.2222 3184
0.0531 stable 0.6543 3187 0.1765 3188
0.1000 original 0.6667 3255 0.2286 3256
0.1000 stable 0.6667 3259 0.1818 3260

. . . . . . . . . . . . . . . . . .

Table 4: Causal effects of hyperparameters on the Accuracy
and F1-score metrics (PCmodel) - static causal discovery task

Dataset Hyperparameter Causal Effect

on Accuracy on F1-score

NetSim-sim15-7 alpha -0.2857 -0.6171
variant 0.0140 0.0154

NetSim-sim4-47 alpha -0.1382 -0.8823
variant 0.0008 -0.0025

NetSim-sim9-49 alpha -1.1082 -2.3088
variant 0.0000 0.0000

abalone alpha -0.2049 -0.3803
variant 0.0000 -0.0389

sachs alpha 0.0006 0.3231
variant 0.0054 0.0060

All results reported in this section are published as benchmark
records at Zenodo as a CausalBench feature [18, 45, 100]. In the
tables, CausalBench execution results are identified using either
a Result ID or a Run ID. A CausalBench Result ID represents the
outcome of a single dataset, model, and metric on a system, pro-
viding a finegrained view of individual executions. In contrast, a
CausalBench Run ID groups multiple ResultIDs within a benchmark
context, encompassing an execution that includes various datasets,
models, and metrics on a system.
Benchmarking Models across Datasets. As the benchmark sce-
nario includes five datasets, two models, and four metrics, we have

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

CausalBench: A Unifying Framework for Benchmarking Causal Learning Models

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Sample CausalBench results for different system configurations (dataset: NetSim-sim4-47, model: PC, metric: Accuracy)
– static causal discovery task; results are recorded at [18, 35, 45, 46, 59, 100]

CBench CPU GPU CPU (GeekBench Score) Memory Metric Time

Res.ID Single Core Multi Core Available (total) Model (used) Metric (used) Accuracy (seconds)

193 AMD Ryzen 9 7940HS NVIDIA GeForce RTX 4070 1829 17497 31.21 GiB 0.28 MiB 0.35 MiB 0.9712 35.04
333 Apple M1 Pro None 2387 12346 16.00 GiB 0.30 MiB 0.35 MiB 0.9712 21.55
453 Apple M3 None 1904 10454 16.00 GiB 0.30 MiB 0.35 MiB 0.9712 17.30
533 Intel(R) Core(TM) i9-12900KF NVIDIA GeForce RTX 3090 2609 15132 127.80 GiB 0.29 MiB 0.37 MiB 0.9712 24.72
5931 AMD Ryzen 5 5625U AMD Radeon (TM) Graphics 1372 8135 15.35 GiB 0.29 MiB 0.37 MiB 0.9712 21.29
5971 Intel(R) Core(TM) i5-8250U NVIDIA GeForce RTX 4070 900 3091 15.52 GiB 0.28 MiB 0.35 MiB 0.9712 8.68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6: Treatment effect estimation of hardware features
over experiment times – static causal discovery

Hardware Feature Causal Effect on Run Time

Used Memory -0.0004
Single-Core Performance7 2.3697
Multi-Core Performance -8.4630

a total of 40 metric evaluations. Table 2 reports F1 scores across all
5 datasets and 2 models within this static benchmark context:
• Both models perform better in simulated datasets.
• For simulated datasets, PC performs better than or equal to GES;

GES performs worse in data with lower numbers of instances,
but performs closer to PC as the number of instances increases.

• For real-life datasets, there is no winner between PC and GES.
Benchmarking the Effects of Hyperparamaters. CausalBench
also enables us to run models with different hyperparameters. Ta-
ble 3 presents sample results from multiple executions of the PC
model on the Abalone dataset, each using different hyperparameter
configurations. As outlined in Section 3.4.5, CausalBench enables
us to analyze the causal relationships between hyperparameters
and metric scores – the analysis results are presented in Table 4.
The causal analysis aligns with and supports the observed trends
in accuracy and F1-scores:
• The causal analysis shows that the alpha parameter negatively

impacts the accuracy related metric scores, since it makes the
model stricter, leading to overfitting.

• The choice of the original or stable variants of the PC algorithm
does not have a significant causal effect on the metric scores.

Benchmarking the Effects of Computational Resources. As
illustrated in Table 5, CausalBench additionally reports profiling in-
formation regarding hardware, software, and resource usage during
benchmark execution6. CausalBench also enables causal treatment
effect estimation of hardware configuration over metrics, such as
experiment times. Table 6 reports sample results calculated using
DoWhy[84] causal estimation model with linear regression. Here,
a negative effect denotes a decrease in time. As it can be observed
from the table, according to these CausalBench results, memory has
a minimal effect over execution times, whereas multi-core resources
have significant impact on the time complexity of these tasks.
6Detailed profiling information files for each execution can be accessed from the runs
page at CausalBench.
7Single and Multi-Core performances are calculated using GeekBench 6 scores of
reported CPUs across benchmarks.

Table 7: CausalBench results for temporal causal discovery
(CBench Run ID: 48, results are recorded at [56])

Dataset Model CBench CBench CBench
Accur. Res.ID F1-score Res.ID SHD Res.ID

STLF VAR-LiNGAM 0.5683 580 0.3122 581 110.5 584
(Panama) PCMCIplus 0.4472 575 0.1705 576 141.5 579

Time Sim VAR-LiNGAM 0.9375 570 0.0 571 1.0 574
PCMCIplus 0.7916 565 0.0666 566 3.3 569

3.6 Case Study#2 - Temporal Causal Discovery
In the second case study, we demonstrate the benchmarking ca-
pabilities of CausalBench for causal discovery on time-series data,
seeking a DAG describing the underlying temporal causal structure,
which may include causal relationships with time lags.

3.6.1 Datasets. For this case study, we consider a real (Panama [5])
and a synthetic (Time Sim [66]) dataset:

• Short-term electricity load forecasting (Panama) [5] - This data is
framed on predicting the short-term electricity load forecasting
(STLF) problem for the Panama power system. The forecasting
horizon is one week, with hourly steps, with a total of 168 hours.
The dataset includes historical load, a vast set of weather vari-
ables, holidays, and historical load weekly forecast features.

• Time Sim [66] - This is a simulated time-series dataset comprising
4 variates and 999 tuples. The data is generated based on an
pre-specified underlying causal structure. This dataset is highly
useful for evaluating Causal Discovery models, since it is difficult
to ascertain the veracity of the provided ground truth for the
underlying causal structure in time-series data.

3.6.2 Models. Models performing causal discovery on time-series
data must account for temporal dependencies, time lags, and poten-
tial feedback loops. Several classes of models have been developed
for this task, leveraging techniques from graphical modeling, struc-
tural equation modeling, and deep learning [33]. In this case study,
we consider two causal discovery algorithms for time-series data,
VAR-LiNGAM [41] and PCMCIplus [80]:

• VAR-LiNGAM [41], Vector Autoregressive Linear Non-Gaussian
Acyclic Model, is an extension of the LiNGAM (Linear Non-
Gaussian Acyclic Model) [88] framework, designed for causal
discovery in time-series data. It combines elements of vector
autoregression (VAR) with non-Gaussianity assumptions to infer
causal relationships between variables.
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Table 8: Sample CausalBench results for different system configurations (dataset: STLF (Panama), model: PCMCIplus, metric:
Accuracy) – temporal causal discovery task; results are recorded at [17, 34, 44, 56, 57, 99]

CBench CPU GPU CPU (GeekBench Score) Memory Metric Time

Res.ID Single Core Multi Core Available (total) Model (used) Metric (used) Accuracy (seconds)

575 AMD Ryzen 5 5625U AMD Radeon (TM) Graphics 1372 8135 15.35 GiB 44.26 MiB 0.16 MiB 0.4472 54.21
595 AMD Ryzen 9 7940HS NVIDIA GeForce RTX 4070 1829 17497 31.21 GiB 44.25 MiB 0.17 MiB 0.4472 90.06
615 Intel(R) Core(TM) i9-12900KF NVIDIA GeForce RTX 3090 2609 15132 127.80 GiB 44.35 MiB 0.16 MiB 0.4472 49.18
635 Intel(R) Core(TM) i5-8250U NVIDIA GeForce RTX 4070 900 3091 15.52 GiB 44.76 MiB 0.15 MiB 0.4472 87.06
663 Apple M3 None 1904 10454 16.00 GiB 44.76 MiB 0.15 MiB 0.4472 47.91
683 Apple M1 Pro None 2387 12346 16.00 GiB 44.82 MiB 0.15 MiB 0.4472 59.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 9: Treatment effect estimation of hardware features
over execution times – temporal causal discovery task

Hardware Feature Causal Effect on Run Time

Used Memory 0.0016
Single-Core Performance -14.6802
Multi-Core Performance -3.1700

Table 10: Sample CausalBench results for different hyperpa-
rameters for PCMCIplusmodel on the STLF (Panama) dataset
– temporal causal discovery task (CBench Run ID: 63, results
are recorded at [55])

Hyperparameters CBench CBench CBench

alpha max_conds_dim Accur. Res.ID F1-score Res.ID SHD Res.ID

0.0062 6 0.4551 4978 0.1860 4979 139.5 4982
0.0166 1 0.4648 5053 0.2559 5054 137.0 5057
0.0323 10 0.4512 5248 0.1944 5249 140.5 5252
0.0479 6 0.4512 5378 0.2043 5379 140.5 5382
0.0583 6 0.4492 5478 0.2032 5479 141.0 5482
0.0635 9 0.4492 5543 0.2000 5544 141.0 5547
0.0792 9 0.4512 5693 0.2043 5694 140.5 5697
0.0896 1 0.4707 5753 0.2664 5754 135.5 5757
. . . . . . . . . . . . . . . . . . . . . . . .

Table 11: Causal analysis capturing the causal effect of hy-
perparameters on metrics for PCMCIplus model – temporal
causal discovery task

Dataset Hyperparameter Causal Effect

on Accuracy on F1-score on SHD

STLF alpha -0.0030 0.3113 0.7648
(Panama) max_conds_dim -0.0011 -0.0064 0.2727

Time Sim alpha -0.4119 -0.1323 6.5897
max_conds_dim 0.0000 0.0000 0.0000

• PCMCIplus [80] – Peter-Clark Momentary Conditional Indepen-
dence (PCMCI [82]) is a model that uses conditional indepen-
dence tests to infer causal relationships in time-series data. It
focuses on detecting direct (momentary) dependencies between
variables at each time point. PCMCIplus (Peter-Clark Momen-
tary Conditional Independence Plus) is an extension of PCMCI
that improves its scalability and robustness.

3.6.3 Metrics. We evaluate the performance of the models based
on fivemetrics. Tomeasure graph similarity of the discovered causal
graph with the original graph, we use accuracy, precision, recall,

F1 score, and the average SHD metric [4, 95] – note that, unlike the
static scenarios, causal discovery on time-series data yields multiple
adjacency matrices, one for each time lag; therefore, causal metrics
need to account these lags.

3.6.4 Sample Results. In this section, we provide a sample subset of
results from the temporal causal discovery benchmark with regards
to metrics listed above. This benchmark can be replicated by in-
stalling the latest causalbench-asu python package and executing
the context with module_id=6 and version=3 as follows:

from causalbench.modules import Context, Run
context1: Context = Context(module_id=6, version=3)
run: Run = context1.execute()
print(run)

As before, results reported in this section are published as bench-
mark records at Zenodo as a CausalBench feature [18, 45, 100].
Benchmarking Models across Datasets A subset of the Causal-
Bench results are reported in Table 7:
• We observe that VAR-LiNGAM outperforms PCMICIplus for

both Panama and Time Sim datasets. This is in line with our
expectations – the datasets have small number of features and
tuples and the underlying causal relationships are linear, which
is better captured by VAR-LiNGAM.

• We also observe that PCMCIplus is slower than VAR-LiNGAM.
This also corraborates prior research [42]: PCMCIplus is a more
complex model and performs conditional independence tests at
multiple time lags and for each pair of variables, which can be
computationally expensive.

Benchmarking the Effects of Hyperparameters As before,
CausalBench enables us to study the effects of hyperparameters on
selected metrics. Sample results are presented in Tables 10 and 11:
• We observe that increasing the alpha hyperparameter results in

worse accuracy scores. This is expected, as the alpha parameter
controls the significance level for conditional independence tests
and increasing the value of alphamakes the model less stringent,
allowing for more causal edges to be retained.

• We also observe that the max_conds_dim parameter does not
have any significant effect on the accuracy results.
Table 12, then, provides a sample of additional benchmark run

recommendations suggested by CausalBench-ER, based on the
causal analysis in Table 11 for dataset STFL and target metric Accu-
racy: the numbers of new experiments recommended for parameters
alpha and max_conds_dim are proportional to their causal effects
on the target metric, Accuracy.
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Table 12: Sample experiment recommendations from
CausalBench-ER, on Dataset: STLF, Model: PCMCIplus, and
Metric: accuracy_temporal

DS. DS. Model. Model. Metric. Metric. HP. HP.max
ID Version ID Version ID Version alpha _conds_dim

1447 2 4 1 2 2 0.0 6
1447 2 4 1 2 2 0.0 12
1447 2 4 1 2 2 0.0 17
1447 2 4 1 2 2 0.1 6
1447 2 4 1 2 2 0.1 12
1447 2 4 1 2 2 0.1 17
1447 2 4 1 2 2 0.2 1

... ... ... ... ... ... ... ...

Benchmarking the Effects of Computational Resources
CausalBench records various other hardware information, such
as CPU usage, GPU usage, memory usage, and disk usage. Table 8
presents sample results. Causal analysis of the effect of hardware
configurations on the execution time based on the causal graph in
Section 3.4.5 is captured in Table 9:

• We observe that the hardware configuration has no impact on
the accuracies, but that they impact the execution times.

• We once again see that while memory does not appear to impact
the execution time performance, both single- and multi-core
CPU performance have significant effects on the execution times.
In particular, single-core performance out-weights multi-core
performance in terms of their impacts on execution times. These
results indicate that the implementations of both VAR-LiNGAM
and PCMCIplus models used in these experiments are primarly
CPU-bound and are not well optimized to utilize multiple cores.

4 Conclusions
In this paper, we showcased CausalBench, a benchmarking platform
facilitating open-source, adaptable, flexible, and scalable assessment
of causal discovery methods. It allows users to create, execute, and
publish benchmarks across various datasets, metrics, and hardware.
In our future work, we aim to expand CausalBench by incorporat-
ing causal inference, causality aware machine learning downstream
tasks, and a more extensive causally-informed experiment design
and benchmark exploration and analysis tools. Enhancements will
include causal explanations for benchmarking insights and stream-
lined user experience via web-based and console applications. We
also plan to introduce scalability improvements and community-
driven benchmarking tools to foster collaboration. CausalBench
aspires to become the standard platform for causal learning evalua-
tion, driving advancements in data-driven decision-making across
critical domains.
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Figure 4: CausalBench "Repositories" page
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Figure 5: CausalBench "Results" page showcasing the results of a context run by multiple users
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Figure 6: Details view for the Short-Term Electricity Load Forecasting (Panama) data set used in Section 3.6
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Figure 7: Details view for VAR-LiNGAMmodel used in Section 3.6
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Figure 8: Details view for the benchmarking context used for the case study in Section 3.6
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  id: 6 
  name: 'Benchmark: VAR-LiNGAM, PCMCIplus' 
  version: 3 
profiling: 
  cpu: 
    architecture: X86_64 
    name: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 
  disk: 
    sda: 
      fusion: null 
      mediatype: SSD 
      model: SanDisk X400 2.5 
      usage: 
        free: 43559714816 
        total: 64240631808 
        used: 17421107200 
    sdb: 
      fusion: null 
      mediatype: SSD 
      model: Samsung SSD 860 
      usage: 
        free: 0 
        total: 0 
        used: 0 
  gpu: {} 
  memory_total: 16660094976 
  platform: 
    architecture: 64bit 
    name: Linux-6.8.0-53-generic-x86_64-with-
glibc2.39 
  storage_total: 61075263488 
results: 
- dataset: 
    id: 1444 
    name: time_sim 
    version: 2 
  metrics: 
  - hyperparameters: 
      binarize: true 
    id: 2 
    name: accuracy_temporal 
    output: 
      score: '0.7916666666666666' 
    profiling: 
      disk: 
        sda: 
          read_bytes: 0 
          write_bytes: 0 
        sdb: 
          read_bytes: 0 
          write_bytes: 0 
      gpu: {} 
      imports: 
        numpy: 1.26.4 
      memory: 108464 

      python: 3.11.11 
    time: 
      duration: 25768550 
      end: 1739746789741584892 
      start: 1739746789715816342 
    version: 2 
  - hyperparameters: 
      binarize: true 
    id: 4 
    name: f1_temporal 
    output: 
      score: '0.06666666666666667' 
    profiling: 
      disk: 
        sda: 
          read_bytes: 0 
          write_bytes: 0 
        sdb: 
          read_bytes: 0 
          write_bytes: 0 
      gpu: {} 
      imports: 
        numpy: 1.26.4 
      memory: 73780 
      python: 3.11.11 
    time: 
      duration: 24473053 
      end: 1739746790842329671 
      start: 1739746790817856618 
    version: 4 
  - hyperparameters: 
      binarize: true 
    id: 6 
    name: precision_temporal 
    output: 
      score: '0.037037037037037035' 
    profiling: 
      disk: 
        sda: 
          read_bytes: 0 
          write_bytes: 0 
        sdb: 
          read_bytes: 0 
          write_bytes: 0 
      gpu: {} 
      imports: 
        numpy: 1.26.4 
      memory: 73732 
      python: 3.11.11 
    time: 
      duration: 23907937 
      end: 1739746791944269932 
      start: 1739746791920361995 
    version: 3  
 

. . . 

Figure 9: Partial view of sample benchmark execution results, encoded in the form of a YAML file (Context Run ID 51 [34])
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Figure 10: Results in Figure 9 uploaded for permanent storage to zenodo.org [26] – the results are assigned a permanent DOI
10.5281/zenodo.14880142
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Figure 11: Screenshot of a sample context execution and partial view of the corresponding benchmark results (Context Run ID
67 [58])
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