CausalBench: A Unifying Framework for Benchmarking Causal Learning Models

Ahmet Kapkiç, Pratanu Mandal, Abhinav Gorantla, Shu Wan, Ertuğrul Çoban, Paras Sheth,

Huan Liu, K. Selçuk Candan*

{akapkic,pmandal5,agorant2,swan,ecoban,psheth5,huanliu,candan}@asu.edu Arizona State University, Tempe, AZ

Abstract

Due to the critical role causality plays in decision-making, the stateof-the-art in machine learning for causality is rapidly evolving. With rapid development and deployment of new models, datasets, and metrics, it is increasingly difficult for researchers and practitioners to identify the most suitable approach for their problem. Models exhibit different performance when they train on different data, and even different hardware/software platforms, making it challenging for users to select the appropriate setup pertinent to their problem. It is therefore increasingly critical to fairly benchmark algorithms through a unified platform across different metrics, software, and hardware. To address these shortcomings, we present CausalBencha comprehensive benchmarking tool for causal machine learning that facilitates accurate and reproducible benchmarking of causal models across metrics and deployment contexts as per the user's needs. CausalBench provides a platform for researchers to utilize its collaborative nature to create benchmarks that are transparent, flexible, and reproducible. It serves, not only as a benchmarking platform for causal machine learning models, but also as a resource that can explain benchmarking results across different metrics, software, and hardware setups. In this paper, we introduce the various key features of CausalBench, within the context of realworld use cases on static and temporal causal discovery tasks.

Keywords

Causal machine learning, causal discovery, benchmarking

1 Introduction

Machine learning models focus on maximizing association between features and outcomes [38]. Recent research has emphasized learning causal relationships to aid in establishing a direct and consistent link between features and outcomes, and are directly reflective of the problem being modeled [37, 85, 86].

In critical areas like public health, grasping these causal connections is vital. For instance, while modeling epidemics, it is essential to capture causally complex interplay of entities in a multi-layer network, including (a) individuals and their social interactions, (b) physical short-range and long-range networks of mobility, (c) parameters of disease models (such as infection rate, average length of recovery, and impact of treatment), and (d) intervention decisions (such as school closures or restrictions on mobility) [96, 102]. Unfortunately, traditional methods like randomized controlled trials (RCTs [93]) are often impractical or unethical in such contexts. Fortunately, the availability of extensive observational data enables

Figure 1: Overview of CausalBench (causalbench.org)

the approximation of causal relationships through data analytics, facilitating the discovery of meaningful patterns and informing effective decision-making. Causal learning from observational data offers a promising alternative to correlation-based learning [12].

1.1 Difficulties Facing the Research Community

Inferring causal relationships from data refers to the task of causal discovery [92]. Given the complexity of real-world problems, accurately identifying causal relationships is challenging. Researchers across different disciplines have made significant efforts to develop algorithms that allow for discovering causal relationships across different contexts (e.g. static, temporal, and spatiotemporal) [6, 13, 25, 81, 87, 91]. However, due to the volume of methods, datasets and metrics there is a lack of a unified platform that allows users to benchmark different algorithms to identify the most suitable ones for their use case. Moreover, existing tools exhibit different performance when they train different types of causal models on different hardware platforms, making it more challenging for users to select the appropriate setup pertinent to their problem.

Standardized evaluation played a major role in ML development and contributed to the impressive impact of ML in scientific innovation. Successful early benchmarking efforts, such as UCI ML and UCI KDD repositories [8], not only helped guide the development of efficient and effective ML algorithms, but also encouraged collaborative research and paved the way for the recent breakthroughs in deep learning. For example, to evaluate an image classifier, we have a widely used set of metrics (e.g., accuracy, F1 score and ROC-AUC), procedures (e.g., cross validation [94]) and datasets (e.g., MNIST [23], CIFAR10 [49] and ImageNet [22]). By developing a unified platform facilitating researchers to benchmark different causal discovery techniques across different levels (e.g. metrics,

 ^{*}The first two authors have equal contributions. This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration".

datasets, hardware) can aid the causal learning community to discover areas where further efforts are needed, and aid in identifying the most suitable causal discovery setup for evaluating against their problems, and provide a better causally driven understanding of different problems under different contexts.

1.2 CausalBench

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Arguing that this goal can only be achieved through systematic, objective, and transparent evaluation of causal learning models and algorithms, we present *CausalBench* [1, 47], a platform of publicly available benchmarks and consensus-building standards for the evaluation of causal learning models and algorithms from observational data¹. Therefore, CausalBench aims to serve as a transparent, fair, and easy-to-use evaluation platform, with benchmark data, metrics, and procedures, as well as state-of-the-art baselines, in order to help establish trust in causal learning's innovation, collaboration, and applications (Figure 1):

- **Objective 1:** Universally adopted metrics, procedures and datasets. This involves conducting an extensive identification of existing datasets, performance metrics, and procedures used in the evaluation of state-of-the-art causal learning algorithms, and developing an "ontology" for benchmarking to standardize the evaluation methodology, improve transparency, and promote collaboration to efficiently advance causal learning.
- 141 **Objective 2:** A standard and convenient way for the community 142 to contribute data and models. Different from datasets for con-143 ventional machine learning, it is often difficult to obtain ground 144 truth of the causal relations among observed variables, not to 145 mention the potential existence of unobserved variables, as in 146 many cases we have to work with datasets with incomplete 147 causal knowledge. How to ascertain that disparate datasets can 148 be integrated in a standard way is an open challenge. 149
- Objective 3: Evaluation of algorithms for novel problems. Novel problems of causal learning are emerging as the topic of causal learning attracts increasing attention. Researchers identify and formulate novel problems that are relevant in data intensive applications. To quantify the progress in the active research area of causal learning in a scientific way, it will be necessary to define evaluation standards.

In brief, CausalBench, publicly available both as a website and a python package aims to assist researchers and developers in easily applying and effectively evaluating (a) causal inference, (b) causal discovery, and (c) causal interpretability algorithms with a variety of standard metrics, procedures, and large-scale datasets.

2 Related Work

2.1 Causality

The study of causality has a long-standing history, yet defining causal relationships—and more so, uncovering them from data—remains an unresolved challenge [37]. Early approaches predominantly relied on statistical methodologies. For instance, the widely used Granger causality [7, 36, 53] is inherently statistical. Fisher [9, 28] and followers advocated a statistical perspective on 175 176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

causality, emphasizing randomized controlled trials (or, at minimum, quasi-randomized experiments [48, 75]) as a means to mitigate confounding effects. Rubin [78] advanced the "potential outcomes" framework and the counterfactual approach to defining causality [77, 79], interpreting causal inference as a missing-data problem where imputation offers a feasible solution. This school of thoughts accelerated significant advancements in data-driven causal inference, such as structural equation models [40, 71]. However, its applicability hinges on the validity of the "ignorability" assumption, which asserts that no unobserved confounders influence the causal mechanism [67, 72, 73, 76].

In contrast to these statistical approaches, Wright [104] arguedat causal conclusions cannot be inferred solely frofrom thee data without incorporating causal hypotheses. This point of view led to the development of highly effective practical methodologies, including path analysis [24, 30, 104], structural equation modeling (SEM [40, 71]), and Bayesian Networks [69], all of which leverage directed graphs to represent contextual knowledge, although not necessarily causally. Pearl introduced structural causal models (SCMs [70, 74]), which employ directed graphs to explicitly encode causal assumptions, enabling hypothesis testing and validation. Pearl and colleagues demonstrated that simple causal graphs can mitigate many common errors encountered in statistical causal analysis, offering a principled approach to handling colliders, confounders, and other sources of flawed causal reasoning [67, 71]. In this framework, learning causality requires rigorous methods that simultaneously infer structural causal hypotheses, represented as latent causal graphs, and estimate causal effects [52, 101].

2.2 ML Benchmarks – A Success Story

Conventional machine learning had maverick beginnings and its success is largely due to grassroots efforts to enable performance evaluation [29]. ML algorithms seek to build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task [61]. When an ML algorithm discovers some patterns (a.k.a. a model), it is not guaranteed that the model actually works as designed. Thus, objective and fair performance evaluation is necessary to enable (a) if a new algorithm works better than an old one, (b) identify strengths and weaknesses of different algorithms, and (c) to enable reproducibility. The UC Irvine (UCI) machine learning repository [8] is one of the largest and earliest benchmarking efforts for ML research and is a collection of databases, domain theories, and data generators that the ML community uses for the empirical analysis of ML algorithms. ImageNet is another recent successful example of benchmark data [22], containing more than 14 million hand-annotated images and providing a standard by which the accuracy of image recognition software can be measured. ML research has advanced through efforts to standardize transparent evaluation. Scientific challenges like TREC [98] and CLEF [19], industrial crowdsourcing such as the Netflix challenge [27], ML-centric platforms like Kaggle [43], CodaLab [68], and TopCoder [50], along with evaluation-as-a-service platforms [39], have contributed significantly. Several specialized benchmarking tools have emerged to enhance machine learning model evaluation. The Ludwig Benchmarking Toolkit [64] offers a lightweight,

¹Documentation and a video explaining how to use CausalBench are available at https://docs.causalbench.org.

customizable framework for deep learning assessment. MLModelScope [20] unifies benchmarking across hardware platforms, focusing on latency and throughput. OpenML [97] facilitates dataset and model sharing for collaboration and reproducibility. AMLB [32] evaluates AutoML systems across tasks and frameworks. Weights and Biases (*W&B*) [10] integrates experiment tracking, real-time visualization, and hyperparameter optimization.

2.3 Causal Benchmarks

One of the earliest attempts to standardize causal discovery benchmarking was the Tübingen Cause-Effect Pairs dataset [62]. This dataset contains 100 real-world cause-effect variable pairs spanning domains such as biology, economics, and physics. CauseMe [63] is an online system for benchmarking causal discovery methods. It offers both synthetic and real-world datasets with known causal structures, allowing researchers to evaluate causal discovery algorithms in controlled and real-world scenarios. More recently, OCDB (Open Causal Discovery Benchmark) [106] was proposed as a more structured benchmarking framework. However, it remains limited to static causal discovery and does not extend to effect estimation or temporal inference. Addressing the need for temporal causal benchmarking, CausalTime [14] introduced a dataset generation pipeline that creates realistic time-series data with ground-truth causal graphs. CausalRivers [31] represents an effort to scale causal discovery benchmarking to real-world time-series data. It consists of a large dataset of river discharge measurements spanning multiple years with fine-grained temporal resolution.

CausalBench Framework

Despite the efforts outlined in the previous section, the field still lacks a unified, publicly available, and configurable platform that supports all major causal inference tasks, including causal discovery, causal effect estimation, and causal inference.

3.1 CausalBench Desiderata

We first introduce the desiderata driving the design of CausalBench:

- **Reproducibility** As outlined in the introduction, one of the critical challenges faced in the research community is reproducibility of experiments. Even with the current best efforts to provide detailed experiment setups, a change in a single driver or library can cause significant differences in the results. An ideal benchmarking platform would document every aspect of an experiment, from the data to the hardware/software configuration of the system used for running the experiments.
- Ease of use Providing and matching every aspect of an experimental setup is costly. Therefore, while thoroughly documenting the setup and results, specifying and benchmarking contexts should be straightforward and seamlessly integrated into regular experimental workflows without adding significant overhead.
- Transparency For the community to trust the results included in the benchmark, the platform should provide a transparent mechanism to track and log an experiment, whether on the data, the model, or the experiment context itself.
- Fairness and Explainability Perfect replication of an experiment is an unattainable ideal. No matter how meticulous two research teams are, they cannot perfectly replicate hardware, 290

software, and hyperparameter configurations. Therefore, when comparing experimental results, it is crucial to identify and explain any differences in experimental setups that can explain differences in the outcomes.

3.2 CausalBench – Formal Underpinnings

CausalBench includes several core components. These include **datasets**, \mathcal{D} , which are data files and configuration files that describe the properties of the data in the data files; **models**, \mathcal{M} , which are algorithms written in Python that take in a dataset and execute a particular model, producing outputs based on the tasks and models; and **metrics** \mathcal{A} , which are Python implementation of metric calculations that take in the outputs provided by the model and output a numerical value, based on its configuration. CausalBench follows a flexible approach, where datasets, models, and metrics can be re-used for different causal machine learning tasks. The set of all causal machine learning tasks available at CausalBench is denoted as \mathcal{T} . Given the above, a **benchmark context**, C, includes a subset (denoted by the subscript $_P$) of datasets \mathcal{D} , models \mathcal{M} and accuracy metrics \mathcal{A} , along with the appropriate parameter and hyperparameter settings:

$$C = \{ (\mathcal{D}_P, \mathcal{M}_P, \mathcal{R}_P, \mathcal{H}_P), \mathcal{D}_P \subseteq \mathcal{D}, \ \mathcal{M}_P \subseteq \mathcal{M}, \ \mathcal{R}_P \subseteq \mathcal{A} \}.$$

Above, H_P denotes the set of **parameter and hyperparameter settings** applicable to the execution or training of the models.

Note that the benchmark context can equivalently be seen as a set of **benchmark scenarios**:

$$C = \{ (d, m, \mathcal{A}_P, h) \mid d \in \mathcal{D}_P, m \in \mathcal{M}_P, h \in \mathcal{H}_P \}.$$

An **instrumented context**, I, is a coupling of these benchmark scenarios with a particular user hardware/software system, s:

$$I(C,s) = \{(d, m, \mathcal{A}_P, h, s) \mid d \in \mathcal{D}_P, m \in \mathcal{M}_P, ; h \in \mathcal{H}_P\}.$$

A **benchmark run**, $\mathcal{R}(\mathcal{I}(C, s))$, then, is the recording of the outputs of the execution of the benchmark scenarios in an instrumented context, \mathcal{I} :

$$\{(A, T, S; d, m, h, s) \mid (d, m, \mathcal{A}_P, h, s) \in \mathcal{I}(C, s)\},\$$

where *A* is a set of key-value pairs recording the value for each accuracy metric $a \in \mathcal{A}_P$. *T* is a set of key-value pairs recording the timing values for each timing metrics, such as *CPU-time*, *GPU-time*; and *S* is a set of key-value pairs recording the system usage values for each resource metrics, such as *CPU-memory*, *GPU-memory*. Noting that the timing metrics *T* and resource metrics *S* are measured for each benchmark scenario.

3.3 CausalBench System Modules

CausalBench stores datasets, models, and metrics along with authenticated benchmark runs of its users in public or private repositories (Figure 1):

• A web-based dataset, model, and metric registration module provides a guided interface through which a provider registers a dataset, a model, or a metric with CausalBench. Registration involves the systematic acquisition of metadata needed for the discovery, access, and use of data and models.

Figure 2: CausalBench runs page

- A data, model, and metric repository manages metadata associated with all registered datasets, models, and metrics and ensures that these persist and are accessible. The repository further stores (a) benchmark contexts and experiment setups consisting of data, model, and metric components and (b) authenticated performance results of benchmark runs and the associated metadata (e.g., hyperparameters, hardware/software setups).
- A benchmark runs page² (Figure 2) where performance results of runs, including results, system information, and a DOI attached to each benchmark run, is displayed. Experiment results are in a tabular format that can be sorted and filtered.
- A CausalBench console-based Python package supports the execution of causal machine learning experiments. The package enables quantitative evaluation of the models (for accuracy and efficiency) based on datasets in the repository using local CPU and GPU resources.
- A web interface supports browsing through repositories of datasets, models, metrics and benchmark contexts, exploring (slice-and-dice) experiments across the runs executed through CausalBench. In addition to providing data download links and data descriptions, the platform also offers accessible APIs of evaluation metrics and service interfaces.

In order to enable reproducible research on causal machine learning, once a dataset, model, or a metric is declared as public and is included in at least one public run, it becomes permanent in the system and cannot be removed. Benchmark runs that are made public are registered with an open-access repository, Zenodo [26], and are associated with a unique document object identifier (DOI).

3.4 CausalBench User Experience

CausalBench features two major components, a CausalBench library written in Python that handles execution and submission of benchmarks, and a repository that has a web front-end that provides users the existing datasets, models, metrics, benchmark contexts and the results of benchmark runs. Thanks to these two components, the user has several options available on launch: downloading/uploading a component, declaring and executing a benchmark run, and exploring existing benchmarks.

3.4.1 Uploading Data, Models, and Metrics. CausalBench repository³ allows users to share their datasets. While these can be

Figure 3: Outline of the causal graph enabling the causallyinformed exploration and analysis of a benchmark

uploaded in the form of a manually packaged file, the CausalBench Python library, written on Python 3.10 and hosted on PyPI under the package name *causalbench-asu*⁴, provides features which allow the users to tie-in the tasks of dataset publishing to their existing workflow; instead of manually bundling the dataset and uploading it as a file on the CausalBench repository, the package makes it easier for the user to upload datasets to CausalBench immediately after they have processed and cleaned their data.

3.4.2 Exploring Data, Model, and Metric Repositories. Users can browse the CausalBench repository for available datasets, models, and metrics. Each component is visualized as a card, providing an overview of the relevant statistics of the components. Clicking on a card provides details and allows downloading the component. The cards corresponding to the versions of the same component are clustered and stacked.

3.4.3 Execution and Registration of Benchmark Runs. A benchmark run is essentially a benchmark scenario (a combination of datasets, models, and metrics) instrumented and executed on the user's local resources. The UI helps the user in the process of creating benchmark scenarios by filtering out incompatible components and highlighting suitable ones as the user starts declaring aspects of the benchmark scenario. This suggestion feature works based on the inputs and the outputs of each component and their task type.

CausalBench Python library, referred to earlier, enables the users to interact with the CausalBench ecosystem by executing benchmarks and submitting its results. Executing a benchmark run includes creating an instance of the benchmark scenario with current system and environment configurations on the local machine, running configurations for each combination of the core components, and uploading the execution results, including the corresponding resource usage, back to CausalBench. Once declared public, these results are registered as permanent and associated with DOIs. The Context module along with the permanancy inherent in each benchmark run generated on the CausalBench platform enables reproducibility of research findings⁵.

3.4.4 Exploration of Benchmark Runs. A user can visualize and explore a benchmark run, consisting of multiple benchmark scenarios, instrumented and executed on the same hardware by the same user. The user can also visualize and explore benchmark runs

 ²Screenshots of CausalBench Runs Page and others can be found in the Appendix.
 ³https://causalbench.org/

⁴https://pypi.org/project/causalbench-asu/

⁵Results published in CausalBench can be verified in as few as four lines of Python code.

465 generated from the context executed on different hardware. This 466 involves slicing and dicing a benchmark run based on the datasets and models and comparing the different metric results and resource 467 468 consumption. The entire benchmark run or its various subsets can 469 be downloaded by the user for external analysis and visualization. 470 In addition, the user can create *virtual* benchmark runs by declaring 471 a new benchmark context and collecting all compatible benchmark 472 scenarios that have been instrumented, executed, and recorded 473 in CausalBench at different times, potentially by different users. 474 This enables the user to explore the performance of the models on 475 different hardware/software settings.

3.4.5 Causally-Informed Explanation and Recommendation of 477 Benchmark Runs (CausalBench-ER). Since accuracy, timing, and 478 resource usage of the models may be impacted by the properties 479 of the data, underlying parameter/hyper-parameter settings, as 480 well as hardware/software configurations, CausalBench provides 481 causally-informed services to (a) disaggregate, de-bias, and explain 482 the various factors impacting accuracy, time, and/or resource perfor-483 mance of the benchmark runs, as well as (b) propose new scenarios 484 to execute to obtain a more robust understanding of the model per-485 formance. The causally-informed exploration and analysis services 486 provided by CausalBench includes the following: 487

476

488

489

490

491

497

498

499

500

501

502

503

504

505

506

507

508

509

510

522

- *Causal explanations (impact and sensitivity analysis):* The benchmark data are analyzed through a causal effect discovery algorithm [84] to quantify the impacts of various factors on the target accuracy, time, or resource usage in a given context.
- Causal recommendations: CausalBench aggregates the above impact analysis, ranking, and prediction services into a causally informed recommendation service, which recommends additional benchmark configurations to execute.

Services that are not currently public, but will be included in future versions of CausalBench includes,

- *Causal ranking and exploration:* Given a set of potentially conflicting decision parameters, the causal graph can be used to identify a non-dominating (pareto-optimal) subset of the runs that best highlight/explain the underlying trade-offs.
- Causal prediction (with knowledge transfer): Given a causal model and a benchmark of runs, CausalBench can provide causallyinformed performance predictions under new settings [15, 103]. CausalBench will tackle data sparsity through causally-informed knowledge transfer across simulation contexts, by disaggregating shareable and non-shareable information relying on the underlying causal structure.

511 Figure 3 provides the outline of the causal graph that forms the 512 basis of these causally-informed explanation and recommendation 513 services. As outlined earlier, CausalBench collects detailed profiling 514 information during the benchmark execution step to provide trans-515 parency and enhance reproducibility across experiments. These 516 include both easily quantifiable data, such as available memory, but 517 also less quantifiable information, such as CPU or GPU models or 518 package versions. Whenever possible, CausalBench-ER relies on 519 established hardware benchmarks, such as Geekbench and Pass-520 mark [2, 3], to map these latter category of context information 521 onto numerical performance scores for causal impact analysis.

Table 1: Summary of selected datasets for the static cau	sal
discovery case study	

Dataset	Instances (Rows)	Features (Columns)	Origin
sim15-7	200	6	Simulated
sim4-47	200	51	Simulated
sim9-49	5000	6	Simulated
Abalone	4000	10	Real Life
Sachs	7000	12	Real Life

Estimating causal effects, which involves quantifying the influence of a treatment variable on an outcome, is a central challenge in causal learning. Treatments may be binary, categorical, or continuous. In this work, we focus on continuous treatments, as they are commonly encountered in benchmarking scenarios - for instance, when treatments represent hardware resource allocations or hyperparameter values. To estimate the average treatment effect (ATE), CausalBench-ER adopts linear regression with backdoor adjustment, under the assumption that a valid adjustment set is available. Figure 3 provides the outline of the causal graph that forms the basis of these causally-informed exploration and analysis services. More specifically, CausalBench-ER leverages a priori causal knowledge, described in the form of a causal graph, to boost the representational ability and achieve better explanations and recommendations. Given a causal graph (Figure 3), enriched by data-driven causal impact analysis describing the underlying causal relationships among the various factors impacting performance, CausalBench-ER provides explanations that are causally-robust.

To help obtain further insights, CausalBench-ER also provides causally-informed recommendations to its users: These recommendations can include suggestions of new experiments/scenarios to be considered (a) to strengthen the statistical strength of the current analyses or (b) to validate or refute specific hypotheses. CausalBench-ER can also (c) recommend an execution context (such as hyper-parameter settings) given a dataset, instrumentation context, and target metrics. A specific mechanism by which CausalBench-ER recommendations can improve experimentations and benchmarking relies on causal effect strengths obtained by the causal analysis process against a selected performance metric. In this case, given a dataset and a target metric, along with a target number of new benchmark runs to be executed, CausalBench-ER identifies the most causally impactful scenario settings (hyperparameters, instrumentation context parameters, etc.) and proposes a grid-search strategy that is informed by the strengths of the causal effects: scenario settings that have larger causal impacts on the target metric are more finely experimented, while avoiding new experiments that are close to existing benchmark runs. Other potential strategies include causally-informed factorization machine [51] style recommendations for new execution contexts, given a target metric to minimize or maximize.

3.5 Case Study #1 – Static Causal Discovery

In this section, we demonstrate the use of CausalBench on static causal discovery tasks.

3.5.1 Datasets. CausalBench currently boasts 1400 static datasets from different sources, including real and simulated datasets. To

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

showcase benchmarking of static causal discovery, in this case study, we experiment with three different data contexts across five datasets; two real world datasets, Abalone and Sachs, and three simulations from the NetSim dataset to compare the performance across real world and synthetic datasets:

- Abalone [65] is a real life dataset that includes measurements about a group of abalones, including their length, diameter, age, and more. The ground truth is provided at [16].
- Sachs [83] is a dataset derived from multiparameter single-cell data. The underlying causal relationships are provided at [16].
- NetSim [89] provides 1440 datasets from 28 simulations of FMRI data. The underlying ground truth information is provided as adjacency matrices between nodes for each dataset. For this case study, we specifically chose sim15-7, sim4-47, and sim9-49 simulations from the NetSim dataset, as they provide the largest variance between selected datasets in terms of feature and instance sizes.

Table 1 provides a summary of selected datasets in terms of instances, features and data origin.

3.5.2 Models. We apply two causal discovery models ailable avin CausalBench on the selected datasets.

- PC [90] (Peter-Clark) algorithm is a widely known constraint-oriented causal discovery method. PC algorithm works by finding (undirected) causal relationships between variables, then directs the edges and provides a PDAG (partially directed acyclic graph) or a DAG (directed acyclic graph). PC assumes Causal Markov condition, faithfulness - no conditional independence without Markov condition is met -, no hidden confounders and cycles in the causal graph. CausalBench's PC algorithm implementation supports several conditional independence tests and original, stable, and parallel variants of the algorithm as hyperparameters.
- GES [60] (Greedy Equivalence Search), is a score based causal discovery algorithms that works with a forward and a backward phase where new edges are added and removed to maximize a scoring function, and returns a DAG. CausalBench's GES imple-mentation includes BIC and BDeu scores as hyperparameters.

Both PC and GES algorithms on CausalBench are based on [105].

3.5.3 *Metrics.* In this case study, we employ four accuracy metrics from CausalBench to evaluate the model outputs. Specifically, we formulate causal graph evaluation as a classification task, where the presence or absence of an edge is treated as a binary classification problem. The four metrics used-accuracy, precision, recall, and F1 score-are adapted from traditional classification tasks to assess the correctness of predicted causal edges [11]. While we do not consider in this case study, CausalBench also provides other accuracy metrics, such as the structural hamming distance (SHD) [21].

3.5.4 Sample Results. In this section, we provide a sample subset of results from the static causal discovery benchmark with regards to metrics listed above. To replicate the results included here, the reader is advised to install the latest CausalBench repository and call the context with *module* id = 5, *version* = 1:

- from causalbench.modules import Context, Run
- context_static: Context = Context(module_id=5, version=1)
- run: Run = context_static.execute() print(run)

Table 2: CausalBench results for static causal discovery (CBench Run ID: 34, results are recorded at [45])

Dataset	Model	Accuracy	CBench Res.ID	F1-Score	CBench Res.ID
abalone	GES	0.6049	505	0.2727	506
	PC	0.6543	509	0.2222	510
NetSim-sim15-7	GES	0.68	521	0.4285	522
	PC	0.76	525	0.5714	526
NetSim-sim4-47	GES	0.9636	529	0.4678	530
	PC	0.9712	533	0.4929	534
NetSim-sim9-49	GES	0.68	537	0.5	538
	PC	0.76	541	0.5	542
sachs	GES	0.6611	513	0.3050	514
	PC	0.7768	517	0.4255	518

Table 3: Sample CausalBench results for different hyperparameters (PC model, Abalone dataset) - static causal discovery (CBench Run ID: 62, results are recorded at [54])

Hyperparameters		meters CBench			CBench
alpha	variant	Accuracy	Res.ID	F1-score	Res.ID
0.0010	original	0.6914	3103	0.2424	3104
0.0010	stable	0.7037	3107	0.2500	3108
0.0531	original	0.6543	3183	0.2222	3184
0.0531	stable	0.6543	3187	0.1765	3188
0.1000	original	0.6667	3255	0.2286	3256
0.1000	stable	0.6667	3259	0.1818	3260

Table 4: Causal effects of hyperparameters on the Accuracy and F1-score metrics (PC model) - static causal discovery task

Dataset	Hyperparameter	Causal Effect			
Dutuset	riyperparameter	on Accuracy	on F1-score		
N. 101 1 15 7	alpha	-0.2857	-0.6171		
NetSim-sim15-/	variant	0.0140	0.0154		
NetCine sine 4 47	alpha	-0.1382	-0.8823		
NetSim-sim4-4/	variant	0.0008	-0.0025		
N 10: : 0.40	alpha	-1.1082	-2.3088		
NetSim-sim9-49	variant	0.0000	0.0000		
1.1	alpha	-0.2049	-0.3803		
abaione	variant	0.0000	-0.0389		
1	alpha	0.0006	0.3231		
sacns	variant	0.0054	0.0060		

All results reported in this section are published as benchmark records at Zenodo as a CausalBench feature [18, 45, 100]. In the tables, CausalBench execution results are identified using either a Result ID or a Run ID. A CausalBench Result ID represents the outcome of a single dataset, model, and metric on a system, providing a finegrained view of individual executions. In contrast, a CausalBench Run ID groups multiple ResultIDs within a benchmark context, encompassing an execution that includes various datasets, models, and metrics on a system.

Benchmarking Models across Datasets. As the benchmark scenario includes five datasets, two models, and four metrics, we have

Kapkiç et al.

Table 5: Sample CausalBench results for different system configurations (dataset: NetSim-sim4-47, model: PC, metric: Accuracy) - static causal discovery task; results are recorded at [18, 35, 45, 46, 59, 100]

CBench	h сри сри		CPU (GeekBench Score)		Memory			Metric	Time
Res.ID	er e	010	Single Core	Multi Core	Available (total)	Model (used)	Metric (used)	Accuracy	(seconds)
193	AMD Ryzen 9 7940HS	NVIDIA GeForce RTX 4070	1829	17497	31.21 GiB	0.28 MiB	0.35 MiB	0.9712	35.04
333	Apple M1 Pro	None	2387	12346	16.00 GiB	0.30 MiB	0.35 MiB	0.9712	21.55
453	Apple M3	None	1904	10454	16.00 GiB	0.30 MiB	0.35 MiB	0.9712	17.30
533	Intel(R) Core(TM) i9-12900KF	NVIDIA GeForce RTX 3090	2609	15132	127.80 GiB	0.29 MiB	0.37 MiB	0.9712	24.72
5931	AMD Ryzen 5 5625U	AMD Radeon (TM) Graphics	1372	8135	15.35 GiB	0.29 MiB	0.37 MiB	0.9712	21.29
5971	Intel(R) Core(TM) i5-8250U	NVIDIA GeForce RTX 4070	900	3091	15.52 GiB	0.28 MiB	0.35 MiB	0.9712	8.68

Table 6: Treatment effect estimation of hardware features over experiment times - static causal discovery

Hardware Feature	Causal Effect on Run Time
Used Memory	-0.0004
Single-Core Performance ⁷	2.3697
Multi-Core Performance	-8.4630

a total of 40 metric evaluations. Table 2 reports F1 scores across all 5 datasets and 2 models within this static benchmark context:

- Both models perform better in simulated datasets.
- For simulated datasets, PC performs better than or equal to GES; GES performs worse in data with lower numbers of instances, but performs closer to PC as the number of instances increases.
- For real-life datasets, there is no winner between PC and GES.

Benchmarking the Effects of Hyperparamaters. CausalBench also enables us to run models with different hyperparameters. Table 3 presents sample results from multiple executions of the PC model on the Abalone dataset, each using different hyperparameter configurations. As outlined in Section 3.4.5, CausalBench enables us to analyze the causal relationships between hyperparameters and metric scores - the analysis results are presented in Table 4. The causal analysis aligns with and supports the observed trends in accuracy and F1-scores:

- The causal analysis shows that the *alpha* parameter negatively impacts the accuracy related metric scores, since it makes the model stricter, leading to overfitting.
- The choice of the *original* or *stable variants* of the PC algorithm does not have a significant causal effect on the metric scores.

Benchmarking the Effects of Computational Resources. As illustrated in Table 5, CausalBench additionally reports profiling information regarding hardware, software, and resource usage during benchmark execution⁶. CausalBench also enables causal treatment effect estimation of hardware configuration over metrics, such as experiment times. Table 6 reports sample results calculated using DoWhy[84] causal estimation model with linear regression. Here, a negative effect denotes a decrease in time. As it can be observed from the table, according to these CausalBench results, memory has a minimal effect over execution times, whereas multi-core resources have significant impact on the time complexity of these tasks.

Table 7: CausalBench results for temporal causal discovery (CBench Run ID: 48, results are recorded at [56])

Dataset	Model		CBench		CBench		CBench
		Accur.	Res.ID	F1-score	Res.ID	SHD	Res.ID
STLF	VAR-LiNGAM	0.5683	580	0.3122	581	110.5	584
(Panama)	PCMCIplus	0.4472	575	0.1705	576	141.5	579
Time Sim	VAR-LiNGAM	0.9375	570	0.0	571	1.0	574
Time Sim	PCMCIplus	0.7916	565	0.0666	566	3.3	569

3.6 Case Study#2 - Temporal Causal Discovery

In the second case study, we demonstrate the benchmarking capabilities of CausalBench for causal discovery on time-series data, seeking a DAG describing the underlying temporal causal structure, which may include causal relationships with time lags.

3.6.1 Datasets. For this case study, we consider a real (Panama [5]) and a synthetic (Time Sim [66]) dataset:

- Short-term electricity load forecasting (Panama) [5] This data is framed on predicting the short-term electricity load forecasting (STLF) problem for the Panama power system. The forecasting horizon is one week, with hourly steps, with a total of 168 hours. The dataset includes historical load, a vast set of weather variables, holidays, and historical load weekly forecast features.
- Time Sim [66] This is a simulated time-series dataset comprising 4 variates and 999 tuples. The data is generated based on an pre-specified underlying causal structure. This dataset is highly useful for evaluating Causal Discovery models, since it is difficult to ascertain the veracity of the provided ground truth for the underlying causal structure in time-series data.

3.6.2 Models. Models performing causal discovery on time-series data must account for temporal dependencies, time lags, and potential feedback loops. Several classes of models have been developed for this task, leveraging techniques from graphical modeling, structural equation modeling, and deep learning [33]. In this case study, we consider two causal discovery algorithms for time-series data, VAR-LiNGAM [41] and PCMCIplus [80]:

• VAR-LiNGAM [41], Vector Autoregressive Linear Non-Gaussian Acyclic Model, is an extension of the LiNGAM (Linear Non-Gaussian Acyclic Model) [88] framework, designed for causal discovery in time-series data. It combines elements of vector autoregression (VAR) with non-Gaussianity assumptions to infer causal relationships between variables.

 $^{^{6}\}mathrm{Detailed}$ profiling information files for each execution can be accessed from the runs page at CausalBench.

Single and Multi-Core performances are calculated using GeekBench 6 scores of reported CPUs across benchmarks.

Table 8: Sample CausalBench results for different system configurations (dataset: STLF (Panama), model: PCMCIplus, metric: Accuracy) – temporal causal discovery task; results are recorded at [17, 34, 44, 56, 57, 99]

CBer	ch CPU	GPU	CPU (GeekE	Bench Score)	e) Memory			Metric	Time
Res.I)	or c	Single Core	Multi Core	Available (total)	Model (used)	Metric (used)	Accuracy	(seconds)
575	AMD Ryzen 5 5625U	AMD Radeon (TM) Graphics	1372	8135	15.35 GiB	44.26 MiB	0.16 MiB	0.4472	54.21
595	AMD Ryzen 9 7940HS	NVIDIA GeForce RTX 4070	1829	17497	31.21 GiB	44.25 MiB	0.17 MiB	0.4472	90.06
615	Intel(R) Core(TM) i9-12900KF	NVIDIA GeForce RTX 3090	2609	15132	127.80 GiB	44.35 MiB	0.16 MiB	0.4472	49.18
635	Intel(R) Core(TM) i5-8250U	NVIDIA GeForce RTX 4070	900	3091	15.52 GiB	44.76 MiB	0.15 MiB	0.4472	87.06
663	Apple M3	None	1904	10454	16.00 GiB	44.76 MiB	0.15 MiB	0.4472	47.91
683	Apple M1 Pro	None	2387	12346	16.00 GiB	44.82 MiB	0.15 MiB	0.4472	59.19

Table 9: Treatment effect estimation of hardware features over execution times - temporal causal discovery task

Hardware Feature	Causal Effect on Run Time
Used Memory	0.0016
Single-Core Performance	-14.6802
Multi-Core Performance	-3.1700

Table 10: Sample CausalBench results for different hyperparameters for PCMCIplus model on the STLF (Panama) dataset - temporal causal discovery task (CBench Run ID: 63, results are recorded at [55])

Hyperparameters			CBench	CBench			CBench
alpha	max_conds_dim	Accur.	Res.ID	F1-score	Res.ID	SHD	Res.ID
0.0062	6	0.4551	4978	0.1860	4979	139.5	4982
0.0166	1	0.4648	5053	0.2559	5054	137.0	5057
0.0323	10	0.4512	5248	0.1944	5249	140.5	5252
0.0479	6	0.4512	5378	0.2043	5379	140.5	5382
0.0583	6	0.4492	5478	0.2032	5479	141.0	5482
0.0635	9	0.4492	5543	0.2000	5544	141.0	5547
0.0792	9	0.4512	5693	0.2043	5694	140.5	5697
0.0896	1	0.4707	5753	0.2664	5754	135.5	5757

Table 11: Causal analysis capturing the causal effect of hyperparameters on metrics for PCMCIplus model - temporal causal discovery task

Dataset	Dataset Hyperparameter		Causal Effect			
Dutuset	nyperparameter	on Accuracy	on F1-score	on SHD		
STLF	alpha	-0.0030	0.3113	0.7648		
(Panama)	max_conds_dim	-0.0011	-0.0064	0.2727		
Time Sim	alpha	-0.4119	-0.1323	6.5897		
	max_conds_dim	0.0000	0.0000	0.0000		

• PCMCIplus [80] - Peter-Clark Momentary Conditional Independence (PCMCI [82]) is a model that uses conditional independence tests to infer causal relationships in time-series data. It focuses on detecting direct (momentary) dependencies between variables at each time point. PCMCIplus (Peter-Clark Momentary Conditional Independence Plus) is an extension of PCMCI that improves its scalability and robustness.

3.6.3 Metrics. We evaluate the performance of the models based on five metrics. To measure graph similarity of the discovered causal graph with the original graph, we use accuracy, precision, recall, F1 score, and the average SHD metric [4, 95] – note that, unlike the static scenarios, causal discovery on time-series data yields multiple adjacency matrices, one for each time lag; therefore, causal metrics need to account these lags.

3.6.4 Sample Results. In this section, we provide a sample subset of results from the temporal causal discovery benchmark with regards to metrics listed above. This benchmark can be replicated by installing the latest causalbench-asu python package and executing the context with module id=6 and version=3 as follows:

from causalbench.modules import Context, Run context1: Context = Context(module_id=6, version=3) run: Run = context1.execute() print(run)

As before, results reported in this section are published as benchmark records at Zenodo as a CausalBench feature [18, 45, 100]. Benchmarking Models across Datasets A subset of the Causal-Bench results are reported in Table 7:

- We observe that VAR-LiNGAM outperforms PCMICIplus for both Panama and Time Sim datasets. This is in line with our expectations - the datasets have small number of features and tuples and the underlying causal relationships are linear, which is better captured by VAR-LiNGAM.
- We also observe that PCMCIplus is slower than VAR-LiNGAM. This also corraborates prior research [42]: PCMCIplus is a more complex model and performs conditional independence tests at multiple time lags and for each pair of variables, which can be computationally expensive.

Benchmarking the Effects of Hyperparameters As before, CausalBench enables us to study the effects of hyperparameters on selected metrics. Sample results are presented in Tables 10 and 11:

- We observe that increasing the *alpha* hyperparameter results in worse accuracy scores. This is expected, as the *alpha* parameter controls the significance level for conditional independence tests and increasing the value of *alpha* makes the model less stringent, allowing for more causal edges to be retained.
- We also observe that the max_conds_dim parameter does not have any significant effect on the accuracy results.

Table 12, then, provides a sample of additional benchmark run recommendations suggested by CausalBench-ER, based on the causal analysis in Table 11 for dataset STFL and target metric Accuracy: the numbers of new experiments recommended for parameters alpha and max_conds_dim are proportional to their causal effects on the target metric, Accuracy.

Table 12: Sample experiment recommendations fromCausalBench-ER, on Dataset: STLF, Model: PCMCIplus, andMetric: accuracy_temporal

DS. ID	DS. Version	Model. ID	Model. Version	Metric. ID	Metric. Version	HP. alpha	HP.max _conds_dim
1447	2	4	1	2	2	0.0	6
1447	2	4	1	2	2	0.0	12
1447	2	4	1	2	2	0.0	17
1447	2	4	1	2	2	0.1	6
1447	2	4	1	2	2	0.1	12
1447	2	4	1	2	2	0.1	17
1447	2	4	1	2	2	0.2	1

Benchmarking the Effects of Computational Resources CausalBench records various other hardware information, such as CPU usage, GPU usage, memory usage, and disk usage. Table 8 presents sample results. Causal analysis of the effect of hardware configurations on the execution time based on the causal graph in Section 3.4.5 is captured in Table 9:

- We observe that the hardware configuration has no impact on the accuracies, but that they impact the execution times.
- We once again see that while memory does not appear to impact the execution time performance, both single- and multi-core CPU performance have significant effects on the execution times. In particular, single-core performance out-weights multi-core performance in terms of their impacts on execution times. These results indicate that the implementations of both VAR-LiNGAM and PCMCIplus models used in these experiments are primarly CPU-bound and are not well optimized to utilize multiple cores.

4 Conclusions

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

In this paper, we showcased CausalBench, a benchmarking platform facilitating open-source, adaptable, flexible, and scalable assessment of causal discovery methods. It allows users to create, execute, and publish benchmarks across various datasets, metrics, and hardware. In our future work, we aim to expand CausalBench by incorporating causal inference, causality aware machine learning downstream tasks, and a more extensive causally-informed experiment design and benchmark exploration and analysis tools. Enhancements will include causal explanations for benchmarking insights and streamlined user experience via web-based and console applications. We also plan to introduce scalability improvements and communitydriven benchmarking tools to foster collaboration. CausalBench aspires to become the standard platform for causal learning evaluation, driving advancements in data-driven decision-making across critical domains.

References

- [1] [n.d.]. CausalBench: Benchmarking Causal Inference Methods. http:// causalbench.org. Accessed: 2025-06-10.
- [2] [n.d.]. Home Geekbench browser.geekbench.com. https://browser. geekbench.com/. [Accessed 13-06-2025].
- [3] [n.d.]. PassMark Software CPU Benchmarks cpubenchmark.net. https: //www.cpubenchmark.net/. [Accessed 13-06-2025].
- [4] Silvia Acid and Luis M de Campos. 2003. Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. *Journal of* artificial intelligence research 18 (2003), 445–490.

[5] Ernesto Aguilar Madrid and Nuno Antonio. 2021. Short-Term Electricity Load Forecasting with Machine Learning. *Information* 12, 2 (2021). https://www. mdpi.com/2078-2489/12/2/50

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

- [6] Sahara Ali, Uzma Hasan, Xingyan Li, Omar Faruque, Akila Sampath, Yiyi Huang, Md Osman Gani, and Jianwu Wang. 2024. Causality for Earth Science–A Review on Time-series and Spatiotemporal Causality Methods. arXiv preprint arXiv:2404.05746 (2024).
- [7] Andrew Arnold, Yan Liu, and Naoki Abe. 2007. Temporal causal modeling with graphical granger methods. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. 66–75.
- [8] Arthur Asuncion, David Newman, et al. 2007. UCI machine learning repository.
 [9] Debabrata Basu*. 2011. Randomization analysis of experimental data: the Fisher
- randomization test. Selected Works of Debabrata Basu (2011), 305–325.
 [10] Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https: //www.wandb.com/ Software available from wandb.com.
- [11] David C Blair. 1979. Information retrieval, cj van rijsbergen. london: Butterworths; 1979: 208 pp. *Journal of the American Society for Information Science* 30, 6 (1979), 374–375.
- [12] Stuart W Card. 2024. Bridging the AI/ML gap with explainable symbolic causal models using information theory. In *Disruptive Technologies in Information Sciences VIII*, Vol. 13058. SPIE, 1305802.
- [13] Lu Cheng, Ruocheng Guo, Raha Moraffah, Paras Sheth, K. Selçuk Candan, and Huan Liu. 2022. Evaluation Methods and Measures for Causal Learning Algorithms. *IEEE Transactions on Artificial Intelligence* 3, 6 (2022), 924–943. doi:10.1109/TAI.2022.3150264
- [14] Yuxiao Cheng, Ziqian Wang, Tingxiong Xiao, Qin Zhong, Jinli Suo, and Kunlun He. 2023. CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery. arXiv preprint arXiv:2310.01753 (2023).
- [15] Yoonhyuk Choi, Jiho Choi, Taewook Ko, Hyungho Byun, and Chong-Kwon Kim. 2022. Based Domain Disentanglement without Duplicate Users or Contexts for Cross-Domain Recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 293–303.
- [16] cmu phil. [n.d.]. example-causal-datasets/real/abalone at main cmuphil/example-causal-datasets — github.com. https://github.com/cmu-phil/ example-causal-datasets/tree/main/real/abalone. [Accessed 15-02-2025].
- [17] Ertugrul Coban. 2025. Benchmark run results by Ertugrul Coban, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/zenodo. 14880474
- [18] Ertugrul Coban. 2025. Benchmark run results by Ertugrul Coban, on benchmark context CB-StaticDiscovery v1. doi:10.5281/zenodo.14876460
- [19] Conference and Labs of the Evaluation Forum. [n. d.]. CLEF 2025. https: //clef2025.clef-initiative.eu/. Accessed: 2025-02-15.
- [20] Abdul Dakkak, Cheng Li, Jinjun Xiong, and Wen mei Hwu. 2020. MLModelScope: A Distributed Platform for Model Evaluation and Benchmarking at Scale. arXiv:2002.08295 [cs.DC] https://arxiv.org/abs/2002.08295
- [21] Martijn de Jongh and Marek J Druzdzel. 2009. A comparison of structural distance measures for causal Bayesian network models. *Recent advances in intelligent information systems, challenging problems of science, computer science series* (2009), 443–456.
- [22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition. Ieee, 248–255.
- [23] Li Deng. 2012. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE signal processing magazine* 29, 6 (2012), 141–142.
- [24] Otis Dudley Duncan. 1966. Path analysis: Sociological examples. American journal of Sociology 72, 1 (1966), 1–16.
- [25] Imme Ebert-Uphoff and Yi Deng. 2014. Causal discovery from spatio-temporal data with applications to climate science. In 2014 13th International Conference on Machine Learning and Applications. IEEE, 606–613.
- [26] European Organization For Nuclear Research and OpenAIRE. 2013. Zenodo. doi:10.25495/7GXK-RD71
- [27] Andrey Feuerverger, Yu He, and Shashi Khatri. 2012. Statistical significance of the Netflix challenge. (2012).
- [28] Ronald A Fisher. 1922. On the mathematical foundations of theoretical statistics. Philosophical transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character 222, 594-604 (1922), 309–368.
- [29] Peter Flach. 2019. Performance evaluation in machine learning: the good, the bad, the ugly, and the way forward. In *Proceedings of the AAAI conference on artificial intelligence*, Vol. 33. 9808–9814.
- [30] David A Freedman. 1987. As others see us: A case study in path analysis. Journal of educational statistics 12, 2 (1987), 101–128.
- [31] Stein Gideon, Shadaydeh Maha, Penzel Niklas, and Joachim Denzler. 2025. CausalRivers - Scaling up benchmarking of causal discovery for real-world timeseries. In *The Thirteenth International Conference on Learning Representations*. https://openreview.net/forum?id=wmV4cIbgl6
- [32] Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl, and Joaquin Vanschoren. 2023. AMLB: an AutoML

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1045 Benchmark. arXiv:2207.12560 [cs.LG] https://arxiv.org/abs/2207.12560

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

- [33] Chang Gong, Chuzhe Zhang, Di Yao, Jingping Bi, Wenbin Li, and YongJun Xu. 2024. Causal discovery from temporal data: An overview and new perspectives. *Comput. Surveys* 57, 4 (2024), 1–38.
- [34] Abhinav Gorantla. 2025. Benchmark run results by Abhinav Gorantla, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/ zenodo.14880142
- [35] Abhinav Gorantla. 2025. Benchmark run results by Abhinav Gorantla, on benchmark context CB-StaticDiscovery v1. doi:10.5281/zenodo.14912185
- [36] Clive WJ Granger. 1969. Investigating causal relations by econometric models and cross-spectral methods. *Econometrica: journal of the Econometric Society* (1969), 424–438.
- [37] Ruocheng Guo, Lu Cheng, Jundong Li, P Richard Hahn, and Huan Liu. 2020. A survey of learning causality with data: Problems and methods. ACM Computing Surveys (CSUR) 53, 4 (2020), 1–37.
- [38] Mark A Hall. 1999. Correlation-based feature selection for machine learning. Ph. D. Dissertation. The University of Waikato.
- [39] Allan Hanbury, Henning Müller, Krisztian Balog, Torben Brodt, Gordon V Cormack, Ivan Eggel, Tim Gollub, Frank Hopfgartner, Jayashree Kalpathy-Cramer, Noriko Kando, et al. 2015. Evaluation-as-a-service: Overview and outlook. arXiv preprint arXiv:1512.07454 (2015).
- [40] Rick H Hoyle. 2012. Handbook of structural equation modeling. Guilford press.
- [41] Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O. Hoyer. 2010. Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity. *Journal of Machine Learning Research* 11, 56 (2010), 1709–1731. http://jmlr.org/ papers/v11/hyvarinen10a.html
- [42] Ziyang Jiao, Ce Guo, and Wayne Luk. 2024. Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery. arXiv preprint arXiv:2409.05500 (2024).
- [43] Kaggle. [n. d.]. Kaggle 2025. https://www.kaggle.com/. Accessed: 2025-02-15.
- [44] Ahmet Kapkic. 2025. Benchmark run results by Ahmet Kapkic, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/zenodo. 14879931
- [45] Ahmet Kapkic. 2025. Benchmark run results by Ahmet Kapkic, on benchmark context CB-StaticDiscovery v1. doi:10.5281/zenodo.14873295
- [46] Ahmet Kapkic. 2025. Benchmark run results by Ahmet Kapkic, on benchmark context CB-StaticDiscovery v1. doi:10.5281/zenodo.14876438
- [47] Ahmet Kapkiç, Pratanu Mandal, Shu Wan, Paras Sheth, Abhinav Gorantla, Yoonhyuk Choi, Huan Liu, and K Selçuk Candan. 2024. Introducing CausalBench: A Flexible Benchmark Framework for Causal Analysis and Machine Learning. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. 5220–5224.
- [48] Yongnam Kim and Peter Steiner. 2016. Quasi-experimental designs for causal inference. *Educational psychologist* 51, 3-4 (2016), 395–405.
- [49] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).
- [50] Karim R Lakhani, David A Garvin, and Eric Lonstein. 2010. Topcoder (a): Developing software through crowdsourcing. Harvard Business School General Management Unit Case 610-032 (2010).
- [51] Mao-Lin Li, K Selçuk Candan, and Maria Luisa Sapino. 2024. Causally Informed Factorization Machines. In 2024 IEEE International Conference on Big Data (BigData). 448-455. doi:10.1109/BigData62323.2024.10825754
- [52] Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. 2017. Causal effect inference with deep latent-variable models. Advances in neural information processing systems 30 (2017).
- [53] Aurélie C Lozano, Naoki Abe, Yan Liu, and Saharon Rosset. 2009. Grouped graphical Granger modeling for gene expression regulatory networks discovery. *Bioinformatics* 25, 12 (2009), i110–i118.
- [54] Pratanu Mandal. 2025. Benchmark run results by Pratanu Mandal, on benchmark context Benchmark (hyperparameters): PC v3. doi:10.5281/zenodo.14898152
- [55] Pratanu Mandal. 2025. Benchmark run results by Pratanu Mandal, on benchmark context Benchmark (hyperparameters): PCMCIplus v2. doi:10.5281/zenodo. 14898476
- [56] Pratanu Mandal. 2025. Benchmark run results by Pratanu Mandal, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/zenodo. 14879924
- [57] Pratanu Mandal. 2025. Benchmark run results by Pratanu Mandal, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/zenodo. 14880037
- [58] Pratanu Mandal. 2025. Benchmark run results by Pratanu Mandal, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/zenodo. 14920545
- [59] Pratanu Mandal. 2025. Benchmark run results by Pratanu Mandal, on benchmark context CB-StaticDiscovery v1. doi:10.5281/zenodo.14912072
- [60] Christopher Meek. 1997. Graphical Models: Selecting causal and statistical models. (1 1997). doi:10.1184/R1/22696393.v1
- [61] Tom M Mitchell and Tom M Mitchell. 1997. Machine learning. Vol. 1. McGrawhill New York.

- [62] Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf. 2016. Distinguishing cause from effect using observational data: methods and benchmarks. *Journal of Machine Learning Research* 17, 32 (2016), 1–102.
- [63] J Munoz-Marí, G Mateo, J Runge, and G Camps-Valls. 2020. CauseMe: An online system for benchmarking causal discovery methods. *In Preparation* (2020).
- [64] Avanika Narayan, Piero Molino, Karan Goel, Willie Neiswanger, and Christopher Ré. 2021. Personalized Benchmarking with the Ludwig Benchmarking Toolkit. arXiv:2111.04260 [cs.LG] https://arxiv.org/abs/2111.04260
- [65] Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn, and Wes B Ford. 1994. The population biology of abalone (haliotis species) in tasmania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait. Sea Fisheries Division, Technical Report 48 (1994), p411.
- [66] Meike Nauta, Doina Bucur, and Christin Seifert. 2019. Causal Discovery with Attention-Based Convolutional Neural Networks. *Machine Learning and Knowl-edge Extraction* 1, 1 (2019), 312–340.
- [67] Leland Gerson Neuberg. 2003. Causality: models, reasoning, and inference, by judea pearl, cambridge university press, 2000. Econometric Theory 19, 4 (2003), 675–685.
- [68] Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran, Xavier Baro, Hugo Jair Escalante, Sergio Escalera, Tyler Thomas, and Zhen Xu. 2023. Codalab competitions: An open source platform to organize scientific challenges. *Journal of Machine Learning Research* 24, 198 (2023), 1–6.
- [69] Judea Pearl. 1985. Bayesian networks: A model cf self-activated memory for evidential reasoning. In Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine, CA, USA. 15–17.
- [70] Judea Pearl. 1995. Causal diagrams for empirical research. Biometrika 82, 4 (1995), 669-688.
- [71] Judea Pearl. 1998. Graphs, causality, and structural equation models. Sociological Methods & Research 27, 2 (1998), 226–284.
- [72] Judea Pearl. 2009. Causal inference in statistics: An overview. (2009).
- [73] Judea Pearl. 2009. Causality. Cambridge university press.
- [74] Judea Pearl and Thomas S Verma. 1995. A theory of inferred causation. In Studies in Logic and the Foundations of Mathematics. Vol. 134. Elsevier, 789–811.
- [75] Charles S Reichardt. 2002. Experimental and quasi-experimental designs for generalized causal inference.
- [76] Paul R Rosenbaum and Donald B Rubin. 1983. The central role of the propensity score in observational studies for causal effects. *Biometrika* 70, 1 (1983), 41–55.
- [77] Donald B Rubin. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology* 66, 5 (1974), 688.
- [78] Donald B Rubin. 1976. Inference and missing data. *Biometrika* 63, 3 (1976), 581-592.
 [78] D. L. B. D. L. 2007. Complete for the state of the s
- [79] Donald B Rubin. 2005. Causal inference using potential outcomes: Design, modeling, decisions. J. Amer. Statist. Assoc. 100, 469 (2005), 322–331.
- [80] Jakob Runge. 2020. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI) (Proceedings of Machine Learning Research, Vol. 124), Jonas Peters and David Sontag (Eds.). PMLR, 1388– 1397. https://proceedings.mlr.press/v124/runge20a.html
- [81] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. *Science advances* 5, 11 (2019), eaau4996.
- [82] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. *Science Advances* 5, 11 (2019), eaau4996. doi:10.1126/sciadv. aau4996 arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.aau4996
- [83] Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan. 2005. Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. *Science* 308, 5721 (2005), 523–529. doi:10.1126/science.1105809 arXiv:https://www.science.org/doi/pdf/10.1126/science.1105809
- [84] Amit Sharma and Emre Kiciman. 2020. DoWhy: An End-to-End Library for Causal Inference. arXiv preprint arXiv:2011.04216 (2020).
- [85] Paras Sheth, Raha Moraffah, K Selçuk Candan, Adrienne Raglin, and Huan Liu. 2022. Domain Generalization–A Causal Perspective. arXiv preprint arXiv:2209.15177 (2022).
- [86] Paras Sheth, Raha Moraffah, Tharindu S Kumarage, Aman Chadha, and Huan Liu. 2024. Causality guided disentanglement for cross-platform hate speech detection. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining. 626–635.
- [87] Paras Sheth, Reepal Shah, John Sabo, K Selçuk Candan, and Huan Liu. 2022. Stcd: A spatio-temporal causal discovery framework for hydrological systems. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 5578–5583.
- [88] Shohei Shimizu, Patrik O. Hoyer, Aapo Hyv228;rinen, and Antti Kerminen. 2006. A Linear Non-Gaussian Acyclic Model for Causal Discovery. *Journal of Machine Learning Research* 7, 72 (2006), 2003–2030. http://jmlr.org/papers/v7/ shimizu06a.html
- [89] Stephen Smith, Karla Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian Beckmann, Thomas Nichols, Joseph Ramsey, and Mark Woolrich.

2011. Network modeling methods for FMRI. *NeuroImage* 54 (01 2011), 875–91. doi:10.1016/j.neuroimage.2010.08.063

- [90] Peter Spirtes and Clark Glymour. 1991. An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review 9, 1 (1991), 62–72. doi:10. 1177/089443939100900106 arXiv:https://doi.org/10.1177/089443939100900106
- [91] Peter Spirtes, Clark Glymour, and Richard Scheines. 2001. Causation, prediction, and search. MIT press.
- [92] Peter Spirtes and Kun Zhang. 2016. Causal discovery and inference: concepts and recent methodological advances. In *Applied informatics*, Vol. 3. Springer, 1–28.
- [93] Harald O Stolberg, Geoffrey Norman, and Isabelle Trop. 2004. Randomized controlled trials. American Journal of Roentgenology 183, 6 (2004), 1539–1544.
- [94] Mervyn Stone. 1974. Cross-validatory choice and assessment of statistical predictions. Journal of the royal statistical society: Series B (Methodological) 36, 2 (1974), 111–133.
- [95] Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. 2006. The max-min hill-climbing Bayesian network structure learning algorithm. *Machine learning* 65 (2006), 31–78.
- [96] Meliksah Turker and Haluk O Bingol. 2023. Multi-layer network approach in modeling epidemics in an urban town. *The European Physical Journal B* 96, 2 (2023), 16.
- [97] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML: networked science in machine learning. SIGKDD Explorations 15, 2 (2013), 49–60. doi:10.1145/2641190.2641198
- [98] Ellen M Voorhees and Donna K Harman. 2005. The text retrieval conference. TREC: Experiment and evaluation in information retrieval (2005), 3–19.
- [99] Shu Wan. 2025. Benchmark run results by Shu Wan, on benchmark context Benchmark: VAR-LiNGAM, PCMCIplus v3. doi:10.5281/zenodo.14881319
- [100] Shu Wan. 2025. Benchmark run results by Shu Wan, on benchmark context CB-StaticDiscovery v1. doi:10.5281/zenodo.14873503
- [101] Shu Wan, Reepal Shah, Qi Deng, John Sabo, Huan Liu, and K Selçuk Candan. 2024. Spatio-temporal Causal Learning for Streamflow Forecasting. In 2024 IEEE International Conference on Big Data (BigData). IEEE, 6161–6170.
- [102] Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan
 Venkatramanan, and Madhav Marathe. 2022. Causalgnn: Causal-based graph
 neural networks for spatio-temporal epidemic forecasting. In *Proceedings of the* AAAI conference on artificial intelligence, Vol. 36. 12191–12199.
- [103] Song Wei, Hanyu Zhang, Ronald Moore, Rishikesan Kamaleswaran, and Yao Xie. 2023. Transfer Learning for Causal Effect Estimation. arXiv preprint arXiv:2305.09126 (2023).
- [104] Sewall Wright. 1921. Correlation and causation. *Journal of agricultural research* 20, 7 (1921), 557.
- [105] Keli Zhang, Shengyu Zhu, Marcus Kalander, Ignavier Ng, Junjian Ye, Zhitang Chen, and Lujia Pan. 2021. gCastle: A Python Toolbox for Causal Discovery. arXiv:2111.15155 [cs.LG]
- [106] Wei Zhou, Hong Huang, Guowen Zhang, Ruize Shi, Kehan Yin, Yuanyuan Lin, and Bang Liu. 2024. OCDB: Revisiting Causal Discovery with a Comprehensive Benchmark and Evaluation Framework. arXiv preprint arXiv:2406.04598 (2024).

1278		1336
1279		1337
1280	Enchmarks Documentation Contact Us Profile Logout	1338
1281	This is the beta version of CausalBench. Your contributions and feedback are appreciated.	1339
1282		1340
1283	Show only my content	1341
1284	Datasets Models Metrics Contexts Runs	1342
1285		1343
1280	Search Text Q	1344
1288		1346
1289	time_sim Time series dataset for electric production	1347
1290		1348
1291		1349
1292	air_quality-0 Air quality dataset, first sample.	1350
1293	伊 0 🗰 [40-354] × [3-37] 凸 0 步 8 😱 9 days ago 🎟 1448 🍄 1	1351
1294	Chart term electricity: lead forecastion (Denome)	1352
1295	Short-term retectivity load orderasting (relation) This dataset is framed on predicting the short-term electricity. This forecasting problem is known in the research field as short-term load forecasting (STLF). These datasets address the STLF problem for the Panama power system, in which the forecasting horizon is one week with hourdy steps which is a total of 168 hours	1353
1296	Ø 2K III [249-48K] x [3-17] ① 0 1 19 III 1447 1447 1447	1354
1297		1355
1298	Telecom Beal world time-series data from telecommunication networks	1356
1299	<i>𝔅</i> 0	1357
1201		1358
1302	fashion_mnist An MNIST-like dataset of 70,000 28x28 labeled fashion images	1359
1302	及 0 🗰 [10K] x [1-784] 凸 0 🛃 4 months ago 🏢 1445 ヤ 1	1361
1304	This work is supported by NSE grant 2311716, CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration	1362
1305		1363
1306	Figure 4: CausalBench "Repositories" page	1364
1307	rigure is canonization repositorios pugo	1365
1308		1366
1309		1367
1310		1368
1311		1369
1312		1370
1313		1371
1314		1372
1315		1373
1316		1374
1317		1375
1318		1376
1319		1377
1320		1378
1321		1379
1322		1380
1323		1381
1324		1382
1325		1383
1327		1304
1328		1303
1329		1387
1330		1388
1331		1389
1332		1390
1333		1391
1334	12	1392
	12	

1277 Appendix – Sample Screenshots from the CausalBench Framework

		This is the beta version of Causa	alBench. Your <u>contrib</u>	utions and feedback are apprecia	ted.		
Show c	only my content						
Datasets	s Models Metrics Cor	ntexts Runs					
0	T . 1						
Search	i lext						
Sort	Run Id Result Time Elapsed	Execution Start Time ✓ Execution End Time	Dataset Model	Metric Ascending ✓	Descending		
	✓ Context ID ✓ Context Version	Context Name Dataset ID Dataset Version	Dataset Name M	odel ID Model Version Model	I Name Metric ID	Metric Version Metr	ic Name Task
Filter	Time Elapsed						
Context	t Version						
	<i>v</i>						
enchmark	Runs					Analysis	Show Results View
Run ID	Context Name	CPU Name	System Memory	GPU Name	GPU Memory	Run Published By	Actions Visibility
54	Benchmark: VAR-LiNGAM. PCMClplus	Apple M1 Pro	16.00 GiB	None	None	Shu Wan	
						(swan@asu.edu)	
53	Benchmark: VAR-LINGAM, PCMCIplus	Apple M3	16.00 GiB	None	None	Ertugrul Coban (ecoban@asu.edu)	20 PUBLIC
51	Benchmark: VAR-LINGAM, PCMCIplus	Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz	15.52 GiB	None	None	Abhinav Gorantla	
		., ., .				(agorant2@asu.edu)	
50	Benchmark: VAR-LINGAM, PCMCIplus	12th Gen Intel(R) Core(TM) i9-12900KF	127.80 GiB	NVIDIA GeForce RTX 3090	24.00 GiB	Pratanu Mandal (pmandal5@asu.edu)	20 PUBLIC
48	Benchmark: VAR-LiNGAM, PCMClplus	AMD Rvzen 5 5625U with Radeon Graphics	15.35 GiB	AMD Radeon (TM) Graphics [gfx90	0c] 6.07 GiB	Pratanu Mandal	
		······································				(pmandal5@asu.edu)	
49	Benchmark: VAR-LiNGAM, PCMCIplus	AMD Ryzen 9 7940HS w/ Radeon 780M Graphics	31.21 GiB	NVIDIA GeForce RTX 4070 Laptop 0	GPU 8.00 GiB	Ahmet Kapkic (akapkic@asu.edu)	e 🕼 PUBLIC
					Items pe	r page: 10 💌	1 - 6 of 6 < >
	Eiguro 5: Course	Panah "Daculta" naga ah	www.accing.th	a reculta of a cont	out mus by	nultinla usa	20
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	multiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	multiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	multiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by 1	nultiple use	rs
	Figure 5: Causa	alBench "Results" page sho	owcasing th	e results of a cont	ext run by r	multiple use	rs

Short-term electricity load for	ecasting (Panama)	
■ 1447 🏹 2 🧭 💿 public 🔒 10 days ago	¥р2к п_р0 ⊻ 111	
ags Short-term electricity load forecasting (Panama)	Kaggle	
Download Show Contexts using this Dataset	Show Runs using this Dataset	Create a new version of this Dataset
Description		
Author: Pratanu Mandal		
Please cite: <u>https://www.kaggle.com/datasets/ernestojag</u> This dataset is framed on predicting the short-term electri	illar/shortterm-electricity-load-forecasting	;;panama the research field as short-term load forenastion (STLF). These datasets address the STLF problem for the Panama nower system in which the
forecasting horizon is one week, with hourly steps, which i	s a total of 168 hours.	une research neix as shoreenn waa meekaanig (Shir). These valasets avuless me Shiri proven nor une ranama power system, in which the
ataset Details		
Dataset File: continuous_dataset.csv		
Feature Name		Feature Type
T2M toc		derimal
· wrt_UVV		vouring.
QV2M_san		decimal
TQL_dav		decimal
QV2M_toc		decimal
TQL_san		decimal
WOM day		docimal
wzw_dav		decimai
TQL_toc		decimal
W2M_san		decimal
Holiday_ID		integer
timestep		integer
W2M_toc		decimal
T2M day		decimal
1214_007		ocuma
holiday		integer
nat_demand		decimal
T2M_san		decimal
QV2M_dav		decimal
school		integer
Dataset File: ground truth.c≈v		
nor ground_rained?		
Feature Name		Feature Type
cause		string
effect		string
		istear

Figure 6: Details view for the Short-Term Electricity Load Forecasting (Panama) data set used in Section 3.6

	1	
🖩 5 🏹 1 🚫 🔘 pi	blic 🔒 4 months ago 🧗 300 🖆	50 ± 141
Active	lub	
Download Show Ber	chmark Contexts using this Model	Show Benchmarks Runs using this Model Create a New Version of this Model
Description Author: Ahmet Kapkic Source: GitHub Please cite: <u>https://lingam.re</u> Discovery of non-gaussian li	udthedocs.io/en/stable/reference/var_lings rear causal models	jam.html
lyperparameters		
Name	Default Value	Description
lags	1	Number of lags.
	·	
criterion	DIC	Unterion to decide the best lags within lags.
prune	True	Whether to prune the adjacency matrix of lags.
random_state	None	random_state is the seed used by the random number generator.
	This work is supported by ♪	v NSE grant 2311716. CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy. Reproducibility, and Scientific Collaboration
	Figure	7: Details view for VAR-LiNGAM model used in Section 3.6

Context ID: 6					
Context Version Number: 3					
Benchmark: VAR-LiNGA	AM, PCMCIplus				
C ⁺ February 16th 2025 User ID: 4 User N	Name: Pratanu Mandal				
Download Show Benchmarks	s Runs of this Benchmark Context				
Dataset Information					
Dataset ID	version	Dataset Name			
1444	2	time_sim			
1447	2	Short-term electricity load forecasting (Par	<u>aama)</u>		
Model Information					
Model ID	Version	Model Name		Hyperparameters	
4	1	pemciplus			
5	1	VAR-LINGAM			
•		YOU LUIVAM			
Metric Information					
Metric ID	Version		Metric Name		
			incare raine		
2	2		accuracy_temporal		
4	4		f1_temporal		
6	3		precision_temporal		
8	3		recall_temporal		
10	2		SHD temporal		
			<u></u>		
Figu	ure 8: Details view for 1	he benchmarking co	ntext used for t	he case study in Section 3.6	

1857	
1858	context:
1859	id: 6
1860	<pre>name: 'Benchmark: VAR-LiNGAM, PCMCIplus'</pre>
1861	version: 3
1862	profiling:
1863	cpu:
1864	architecture: X86_64
1965	<pre>name: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz</pre>
1865	disk:
1800	sda:
1867	fusion: null
1868	mediatype: SSD
1869	model: SanDisk X400 2.5
1870	usage:
1871	free: 43559714816
1872	total: 64240631808
1873	used: 1/42110/200
1874	sdb:
1875	fusion: null
1876	mediatype: SSD
1877	model: Samsung SSD 860
1878	usage:
1879	tetal: 0
1880	
1881	anu: {}
1882	memory total: 16660094976
1883	nlatform:
1884	architecture: 64bit
1885	name: Linux-6.8.0-53-generic-x86.64-with-
1886	alibc2.39
1997	storage total: 61075263488
1889	results:
1888	- dataset:
1889	id: 1444
1890	name: time_sim
1891	version: 2
1892	metrics:
1893	– hyperparameters:
1894	binarize: true
1895	id: 2
1896	<pre>name: accuracy_temporal</pre>
1897	output:
1898	score: '0.79166666666666666666
1899	profiling:
1900	disk:
1901	sda:
1902	read_bytes: 0
1903	write_bytes: 0
1904	SdD:
1905	read_bytes: 0
1906	write_bytes: 0
1907	gpu: {}
1908	LINPORTS:
1909	nump; 1.20.4
1910	iiieiii01y: 100404
1911	

	python: 3.11.11	1916
	time:	1917
	duration: 25768550	1918
	end: 1739746789741584892	1919
	start: 1739746789715816342	1920
	version: 2	1921
-	hyperparameters:	1922
	binarize: true	1923
	id: 4	1924
	name: f1_temporal	1025
	output:	1925
	score: '0.066666666666666666666666666666666666	1926
	profiling:	1927
	disk:	1928
	sda:	1929
	read_bytes: 0	1930
	write_bytes: 0	1931
	sdb:	1932
	read_bytes: 0	1933
	write_bytes: 0	1934
	gpu: {}	1935
	imports:	1936
	numpy: 1.26.4	1937
	memory: 73780	1029
	python: 3.11.11	1938
	time:	1939
	duration: 24473053	1940
	end: 1739746790842329671	1941
	start: 1739746790817856618	1942
	version: 4	1943
-	hyperparameters:	1944
	binarize: true	1945
	id: 6	1946
	<pre>name: precision_temporal</pre>	1947
	output:	1948
	score: '0.037037037037037035'	1949
	profiling:	1950
	disk:	1051
	sda:	1951
	read_bytes: 0	1952
	write_bytes: 0	1953
	sdb:	1954
	read_bytes: 0	1955
	write_bytes: 0	1956
	gpu: {}	1957
	imports:	1958
	numpy: 1.26.4	1959
	memory: 73732	1960
	python: 3.11.11	1961
	time:	1962
	duration: 23907937	1963
	end: 1739746791944269932	1064
	start: 1739746791920361995	1904
	version: 3	1902
		1966
		1967
		1968
		1969

Figure 9: Partial view of sample benchmark execution results, encoded in the form of a YAML file (Context Run ID 51 [34])
17

1973		zoondo	Search records	0	Communities A	Av daebboard		A Login	172 Sign up	
1974			Search records	Q	Communities N	wy dashboard		₩J Log in		
1975										
1976	F	Published February 17, 2	025 Version v1			Othe	er 🔓 Open	4	0	
1977								4 ⊛ VIEWS 🛓 DO		
1978	I	Benchmark r	un results by Abhi	nav Goran	itla, on be	enchmark		 Show more detail 	ls	
1979	0	context Bend	hmark: VAR-LiNG	AM, PCMC	Ciplus v3					
1980	/	Abhinav Gorantla 💄								
1981		Results of the content	cee attached VAMI file for dat-	nd run profilies				Versions		
1982	1	courts or the context run	, soo allached TAIVIL HIE TOT DETAILS &	na run proning.				Version v1	Feb 17, 2025	
1983	I	Files						10.5261/201000.14880142		
1984		Files (14.1 kB)					>	Cite all versions? You can cite all using the DOI 10.5281/zenodo.148	versions by 80141. This DOI	
1986		Name			Size	B	Download all	represents all versions, and will alw the latest one. Read more.	vays resolve to	
1987					0.20					
1988		benchmark_results.yam md5:3aaed597b307d7583f5578	I 70cecedd5 @		14.1 kB		🛓 Download			
1989								External resources		
1990		Citations O					5	Indexed in		
1991		onations 😈					· · · ·			
1992		Show Lite	rature (0) 🗌 Dataset (0) 🗌 So	tware (0)	Search for o	citation	Search			
1993		Uni	known (0) 📋 Citations To This Ver	sion						
1994		No citations found						Keywords and subjects		
1995								benchmark model evaluation		
1996										
1997								Details		
1998								DOI		
1999								DOI 10.5281/zenodo.14880142		
2000								Resource type		
2001								Publisher		
2002								Zenodo		
2003										
2004								Rights		
2005									ibution 1.0	
2005								Creative Commons Attr International	ibution 4.0	
2007										
2000										
2010								Citation		
2011								Abhinav Gorantla. (2025). Benchm	ark run results	
2012								Benchmark: VAR-LiNGAM, PCMCI	plus v3.	
2013								Zenouo, mips.//doi.org/10.5281/28	1000.14060142	
2014								Style APA -	di	
2015										
2016								Export		
2017								Export		
2018								JSON	Export	
2019										
2020								Technical metadata		
2021								Created February 16, 2025 Modified February 16, 2025		
2022										
2023					_		Fa -7			
2024	Figure 10: Resul	ts in Figure	9 uploaded for p	ermanent	storage	to zenod	o.org [26]	- the results are as	ssigned a	permanent
2025	10.5281/zenodo.1	14880142								
2026										
2027										
2028										

2089	(causalbench) PS C:\Users\pmandal5.ASURITE\Desktop\CB> python temporal.py	2147
2090	Fetched context with module_id=6 and version=3	2148
2091	Fetched task with module_id=discovery.temporal	2149
2092	Fetched dataset with module_id=1444 and version=2	2150
2093	Fetched dataset with module_id=1447 and version=2	2151
2094	Fetched model with module_id=4 and version=1	2152
2095	Fetched model with module_id=5 and version=1	2153
2096	Fetched metric with module_late2 and version=2	2154
2097	Fetched metric with module_id=4 and version=4	2155
2098	Fetched metric with module_id=0 and version=3	2156
2099	Fetched metric with module_id=10 and version=2	2157
2100		2158
2100	Task: discoverv.temporal	2150
2101	······································	2160
2102	Dataset: time_sim	2100
2103	Model: pcmciplus	2101
2104	tau_min: 1	2102
2105	tau_max: 1	2163
2106	alpha: 0.01	2164
2107	contemp_collider_rule: majority	2165
2108	conflict_resolution: True	2166
2109	reset_lagged_links: False	2167
2110	max_conds_dim: None	2168
2111	max_complications: 1	2169
2112	max_conds_py: None	2170
2113	max_conds_px: None	2171
2114	fdr method: none	2172
2115	Metrics:	2173
2116	accuracy temporal: 0.7916666666666666	2174
2117	binarize: True	2175
2118	f1_temporal: 0.066666666666666666666666666666666666	2176
2119	binarize: True	2177
2120	precision_temporal: 0.037037037037035	2178
2121	binarize: True	2179
2122	recall_temporal: 0.33333333333333333	2180
2123	binarize: True	2181
2124	SHD_temporal: 3.333333333333333335	2182
2125	binarize: True	2183
2126		2184
2127		2185
2128		2186
2129	Figure 11: Screenshot of a sample context execution and partial view of the corresponding benchmark results (Context Run ID	2187
2130	67 [58])	2189
2130	o, [oo]/	2100
2131		2109
2152		2190
2153		2191
2134		2192
2135		2193
2136		2194
2137		2195